标签:dsp pmf bfs cbo stp jsp ndk pex 二次
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
#使用numpy生成200个随机点,范围从-0.5到0.5均匀分布,增加一个维度得到200行1列的数据(生成二维数据)
x_data = np.linspace(-0.5,0.5,200)[:,np.newaxis]
#生成随机噪声,形状和x_data相同
noise = np.random.normal(0,0.02,x_data.shape)
y_data = np.square(x_data)+noise
#定义连个placeholder,行不确定,列为1
x = tf.placeholder(tf.float32,[None,1])
y = tf.placeholder(tf.float32,[None,1])
#定义神经网络中间层
#权值随机数,1行(输入层1个神经元),10列(中间层10个神经元)
Weights_L1 = tf.Variable(tf.random_normal([1,10]))
#10个偏置值
biases_L1 = tf.Variable(tf.zeros([1,10]))
Wx_plus_b_L1 = tf.matmul(x,Weights_L1)+biases_L1
L1 = tf.nn.tanh(Wx_plus_b_L1)
#定义神经网络输出层
Weights_L2 = tf.Variable(tf.random_normal([10,1]))
#1个偏置值
biases_L2 = tf.Variable(tf.zeros([1,1]))
Wx_plus_b_L2 = tf.matmul(L1,Weights_L2)+biases_L2
prediction = tf.nn.tanh(Wx_plus_b_L2)
#二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))
#梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
with tf.Session() as sess:
#变量初始化
sess.run(tf.global_variables_initializer())
#训练2000次,使用placeholder往x,y 传入x_data,y_data
for _ in range(2000):
sess.run(train_step,feed_dict={x:x_data,y:y_data})
#获得预测值
prediction_value = sess.run(prediction,feed_dict={x:x_data})
#画图
plt.figure()
#散点图
plt.scatter(x_data,y_data)
#红色的实线,宽度为5
plt.plot(x_data,prediction_value,‘r-‘,lw=5)
plt.show()
标签:dsp pmf bfs cbo stp jsp ndk pex 二次
原文地址:http://www.cnblogs.com/Bella2017/p/7967608.html