标签:拼接 ace down const 反转 kth code inf ++
给定$n$个数序列,每次两个操作,将区间$[L,R]$拼接到去掉区间后的第$c$个数后,或者翻转$[L,R]$
Splay区间操作模板,对于区间提取操作,将$L-1$ Splay到根,再将$R+1$ Splay到根节点的右儿子,那么根节点右儿子的左儿子就对应区间$[L,R]$,对于反转操作,通过懒操作下放
#include <bits/stdc++.h>
#define inf 0x7f7f7f7f
using namespace std;
const int N = 500005;
int ch[N][2], fa[N], key[N], lazy[N], sz[N];
int root, tot;
inline int get(int x) {return ch[fa[x]][1] == x;} // left is 0, right is 1
inline void pushup(int x) {
sz[x] = sz[ch[x][0]] + sz[ch[x][1]] + 1;
}
inline void pushdown(int x) {
if(lazy[x]) {
lazy[x] = 0;
swap(ch[x][0], ch[x][1]);
lazy[ch[x][0]] ^= 1; lazy[ch[x][1]] ^= 1;
}
}
inline void rotate(int x) {
int f = fa[x], ff = fa[f], which = get(x);
pushdown(f); pushdown(x);
ch[f][which] = ch[x][which ^ 1];
fa[ch[f][which]] = f;
ch[x][which ^ 1] = f;
fa[f] = x; fa[x] = ff;
if(ff) ch[ff][ch[ff][1] == f] = x;
pushup(f); pushup(x);
}
inline void splay(int x, int target) {
while(fa[x] != target) {
if(fa[fa[x]] != target) {
rotate((get(x) == get(fa[x])) ? fa[x] : x);
}
rotate(x);
}
if(!target) root = x;
}
inline int get_kth(int x, int k) {
if(!x) return 0;
while(1) {
pushdown(x);
if(k == sz[ch[x][0]] + 1) break;
if(k > sz[ch[x][0]] + 1) {
k -= sz[ch[x][0]] + 1; x = ch[x][1];
}else x = ch[x][0];
}
return x;
}
inline int newnode(int v, int f) {
int x = ++tot;
ch[x][0] = ch[x][1] = 0; fa[x] = f;
key[x] = v; sz[x] = 1; lazy[x] = 0;
return x;
}
int build(int l, int r, int f) {
if(l > r) return 0;
int mid = (l + r) / 2;
int x = newnode(mid, f);
ch[x][0] = build(l, mid - 1, x);
ch[x][1] = build(mid + 1, r, x);
pushup(x);
return x;
}
inline void init(int x) {root = tot = 0; root = build(0, x + 1, 0);}
inline void cut(int l, int r, int c) {
splay(get_kth(root, l), 0); splay(get_kth(root, r + 2), root);
int tmp = ch[ch[root][1]][0];
ch[ch[root][1]][0] = 0;
pushup(ch[root][1]); pushup(root);
splay(get_kth(root, c + 1), 0); splay(get_kth(root, c + 2), root);
fa[tmp] = ch[root][1];
ch[ch[root][1]][0] = tmp;
pushup(ch[root][1]); pushup(root);
}
inline void filp(int l, int r) {
splay(get_kth(root, l), 0); splay(get_kth(root, r + 2), root);
lazy[ch[ch[root][1]][0]] ^= 1;
pushup(ch[root][1]); pushup(root);
}
int n, m, a, b, c;
int cnt;
void out(int x){
if (!x) return;
pushdown(x);
out(ch[x][0]);
if (key[x] >= 1 && key[x] <= n) {
cnt++;
printf("%d", key[x]);
if (cnt < n) printf(" ");
else puts("");
}
out(ch[x][1]);
}
char opt[20];
int main() {
while(scanf("%d%d", &n, &m) != EOF) {
if(n == -1 && m == -1) break;
init(n);
for(int i = 1; i <= m ;++i) {
scanf("%s", opt);
if(opt[0] == 'C') {
scanf("%d%d%d", &a, &b, &c); cut(a, b, c);
}else scanf("%d%d", &a, &b, &c), filp(a, b);
}
cnt = 0; out(root);
}
return 0;
}
【HDU 3487】Play with Chain Splay
标签:拼接 ace down const 反转 kth code inf ++
原文地址:http://www.cnblogs.com/ogiso-setsuna/p/7978977.html