码迷,mamicode.com
首页 > 其他好文 > 详细

Spark内核概述

时间:2017-12-14 20:58:04      阅读:106      评论:0      收藏:0      [点我收藏+]

标签:schedule   用户   executors   注意   height   end   ati   def   gis   

技术分享图片

技术分享图片

提交Spark程序的机器一般一定和Spark集群在同样的网络环境中(Driver频繁和Executors通信),且其配置和普通的Worker一致

1. Driver: 具有main方法的,初始化 SparkContext 的程序。Driver运行在提交Spark任务的机器上。

        Driver 部分的代码: SparkConf + SparkContext

SparkContext: 创建DAGScheduler, TaskScheduler, SchedulerBackend, 在实例化的过程中Register当前程序给Master。 Master接
        受注册,如果没有问题,Master会为当前程序分配AppId并分配计算资源

技术分享图片

Cluster Manager:获取集群资源的外部服务。Spark应用程序的运行不依赖于Cluster Manager。

Master: 接受用户提交的程序并发送指令给Worker,让其为当前程序分配计算资源,每个Worker所在节点默认为当前程序分配一个
        Executor,在Executor中通过线程池并发执行。

        可以通过以下三种途径得到要为当前程序分配多少计算资源:

        (1). spark-env.sh 和 spark-default.sh 中的配置信息

        (2) submit 提供的参数

        (3) 程序中,conf里定义的

Worker:不运行程序的代码,它管理当前节点的内存、CPU等计算资源,并接收Master的指令来分配具体的计算资源Executor(在新的进程中分配)

Worker只有在启动时才会向Master发送状态报告。

以下情况会触发Job: 1. Action   2. checkpoint   3. 排序

 

Spark 提交任务概述:

技术分享图片

 

注意: Master 给 Worker 发送指令,要求其为Application 分配资源时,并不关心具体的资源是否已经分配。也就是说Master发指令后就记录了资源的分配,

以后其它客户端提交程序的时候就不会再分配该资源了。其弊端: 是其它要提交的程序可能分配不到本来可以分配的资源。

优势:在 Spark 分布式系统弱耦合的基础上最快的执行程序(否则如果Master要等到Worker最终分配成功后才通知 Driver的话,就会造成Driver阻塞,不

能够最大化并行计算资源的使用率)。默认情况下,Spark中的任务是排队的,也就是说同时只有一个任务在执行,所以其弊端并不明显。

Spark内核概述

标签:schedule   用户   executors   注意   height   end   ati   def   gis   

原文地址:http://www.cnblogs.com/langfanyun/p/8018097.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!