标签:acm 二进制
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5014
Number Sequence
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 681 Accepted Submission(s): 321
Special Judge
Problem Description
There is a special number sequence which has n+1 integers. For each number in sequence, we have two rules:
● ai ∈ [0,n]
● ai ≠ aj( i ≠ j )
For sequence a and sequence b, the integrating degree t is defined as follows(“⊕” denotes exclusive or):
t = (a0 ⊕ b0) + (a1 ⊕ b1) +···+ (an ⊕ bn)
(sequence B should also satisfy the rules described above)
Now give you a number n and the sequence a. You should calculate the maximum integrating degree t and print the sequence b.
Input
There are multiple test cases. Please process till EOF.
For each case, the first line contains an integer n(1 ≤ n ≤ 105), The second line contains a0,a1,a2,...,an.
Output
For each case, output two lines.The first line contains the maximum integrating degree t. The second line contains n+1 integers b0,b1,b2,...,bn. There is exactly one space between bi
and bi+1(0 ≤ i ≤ n - 1). Don’t ouput any spaces after bn.
Sample Input
Sample Output
Source
思路: 网上已经有很多解题报告了,解法都差不多,给定一个数n,求这n+1个数与另外n+1个数相匹配求最大的异或值之和;
可以发现规律: 从n开始遍历到0,让每个值都找到另一个“互补”的值,比如 :n=9,那么就有10个数,最大的是9,其二进制表示为1001,那么它就应该与0110匹配~
(一定得从最大值n开始遍历,才符合贪心的正确性)
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <cstdio>
#include <cmath>
const int N=1e5+100;
using namespace std;
int hash[N];
int a[N];
int main()
{
int n;
while(cin>>n)
{
for(int i=1;i<=n+1;i++)
{
scanf("%d",&a[i]);
}
memset(hash,-1,sizeof(hash));
for(int i=n;i>=0;i--) //将n个数从大到小排列进行位处理,使得“互补”,这样异或值才是最大的;
{
if(hash[i]>-1)continue;
int sum=0,cnt=1,s=i;
while(s)
{
int t=(s&1)^1;
sum+=t*cnt;
cnt*=2;
s/=2;
}
hash[i]=sum;
hash[sum]=i;
}
printf("%I64d\n",(long long )n*n+n);
for(int i=1;i<=n+1;i++)
{
if(i==1)printf("%d",hash[a[i]]);
else printf(" %d",hash[a[i]]);
}
printf("\n");
}
return 0;
}
hdu 5014(贪心+异或 西安网络赛)
标签:acm 二进制
原文地址:http://blog.csdn.net/liusuangeng/article/details/39316301