标签:style http color io os ar for sp on
题目大意:定义Lucky Number, 给定一个数n,输出有两个差值最小Lucky Number,x和y,要求x+y=n。
解题思路:根据Lucky Number定义,用树状数组预处理出所有的Lucky Number,然后对于每个n,用二分找到最接近n/2的Lucky Number,然后去枚举。
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
#define lowbit(x) ((x)&(-x))
const int maxn = 2000000;
int N, fenw[maxn+5], vis[maxn+5], num[maxn+5];
void add (int x, int v) {
while (x <= maxn) {
fenw[x] += v;
x += lowbit(x);
}
}
int find (int k) {
int c = 0, p = 0;
for (int i = 20; i >= 0; i--) {
p += (1<<i);
if (p > maxn || c + fenw[p] >= k)
p -= (1<<i);
else
c += fenw[p];
}
return p + 1;
}
int init (int n) {
memset(fenw, 0, sizeof(fenw));
for (int i = 1; i <= maxn; i += 2)
add(i, 1);
n /= 2;
for (int i = 2; i <= n; i++) {
int l = find(i);
if (n < l)
break;
for (int j = l; j <= n; j += l)
vis[j] = find(j);
for (int j = l; j <= n; j += l)
add(vis[j], -1);
n -= n / l;
}
memset(vis, 0, sizeof(vis));
for (int i = 1; i <= n; i++) {
num[i] = find(i);
vis[num[i]] = 1;
}
return n;
}
void solve (int n) {
//int k = upper_bound(num.begin(), num.end(), n / 2) - num.begin();
//int k = lower_bound(num.begin(), num.end(), n / 2) - num.begin();
if ((n&1) == 0) {
int k = upper_bound(num + 1, num + 1 + N, n / 2) - num - 1;
while (k >= 1) {
if (vis[n - num[k]]) {
printf("%d is the sum of %d and %d.\n", n, num[k], n - num[k]);
return;
}
k--;
}
}
printf("%d is not the sum of two luckies!\n", n);
}
int main () {
N = init(maxn);
int n;
while (~scanf("%d", &n)) {
solve(n);
}
return 0;
}
uva 10909 - Lucky Number(树状数组)
标签:style http color io os ar for sp on
原文地址:http://blog.csdn.net/keshuai19940722/article/details/39297331