码迷,mamicode.com
首页 > 其他好文 > 详细

BZOJ 2152 聪聪可可 | 树分治

时间:2017-12-20 03:55:14      阅读:109      评论:0      收藏:0      [点我收藏+]

标签:printf   add   continue   can   i++   type   cstring   break   algorithm   

#include<cstdio>
#include<algorithm>
#include<cstring>
#define N 20005
typedef long long ll;
using namespace std;
ll n,K,fa[N],sze[N],son[N],dis[N],head[N],ecnt,ans,tot;
bool vis[N];
struct edge {ll nxt,v,w;}e[2*N];
ll gcd(ll x,ll y) { return y==0?x:gcd(y,x%y);}
void add(ll u,ll v,ll w)
{
    e[++ecnt].v=v,e[ecnt].w=w,e[ecnt].nxt=head[u],head[u]=ecnt;
    e[++ecnt].v=u,e[ecnt].w=w,e[ecnt].nxt=head[v],head[v]=ecnt;
}
int calcG(int sv)
{
    static int qn,que[N];
    int u,v,mx=n,G; 
    que[qn=1]=sv,fa[sv]=0;
    for (int ql=1;ql<=qn;ql++)
    {
	sze[u=que[ql]]=1,son[u]=0;
	for (int i=head[u];i;i=e[i].nxt)
	{
	    if (vis[v=e[i].v] || v==fa[u]) continue;
	    fa[v]=u,que[++qn]=v;
	}
    }
    for (int ql=qn;ql>=1;ql--)
    {
	u=que[ql],v=fa[u];
	if (qn-sze[u]>son[u]) son[u]=qn-sze[u];
	if (son[u]<mx) G=u,mx=son[u];
	if (!v) break;
	sze[v]+=sze[u];
	if (sze[u]>son[v]) son[v]=sze[u];
    }
    return G;
}
inline ll calc(int sv,ll L)
{
    static int qn,que[N];
    int cnt[4],u,v;
    memset(cnt,0,sizeof(cnt));
    que[qn=1]=sv,dis[sv]=L,fa[sv]=0;
    for (int ql=1;ql<=qn;ql++)
    {
	cnt[dis[u=que[ql]]%3]++;
	for (int i=head[u];i;i=e[i].nxt)
	    if (vis[v=e[i].v] || v==fa[u]) continue ;
	    else  fa[v]=u,dis[v]=dis[u]+e[i].w,que[++qn]=v;
    }
    return cnt[0]*cnt[0]+cnt[1]*cnt[2]*2;
}
void solve(int u)
{
    int G=calcG(u);
    vis[G]=1;
    ans+=calc(G,0);
    for (int i=head[G];i;i=e[i].nxt)
	if (!vis[e[i].v]) ans-=calc(e[i].v,e[i].w);
    for (int i=head[G];i;i=e[i].nxt)
	if (!vis[e[i].v]) solve(e[i].v);
}
int main()
{
    scanf("%lld",&n);
    for (ll i=1,u,v,w;i<n;i++)
    {
	scanf("%lld%lld%lld",&u,&v,&w);
	add(u,v,w%3);
    }
    solve(1);
    ll G=gcd(ans,tot=n*n);
    printf("%lld/%lld\n",ans/G,tot/G);
    return 0;
}

 

BZOJ 2152 聪聪可可 | 树分治

标签:printf   add   continue   can   i++   type   cstring   break   algorithm   

原文地址:http://www.cnblogs.com/mrsheep/p/8067585.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!