码迷,mamicode.com
首页 > 其他好文 > 详细

博弈 Nim问题 POJ2234

时间:2017-12-20 13:50:01      阅读:211      评论:0      收藏:0      [点我收藏+]

标签:ike   根据   str   include   异或   bsp   mina   using   mat   

定义:

   通常的Nim游戏的定义是这样的:有若干堆石子,每堆石子的数量都是有限的,合法的移动是

   “选择一堆石子并拿走若干颗(不能不拿)”,如果轮到某个人时所有的石子堆都已经被拿空了,

   则判负(因为他此刻没有任何合法的移动)。

   

   

游戏状态只分两种:当前先手必胜,当前先手必败;前者称为N位置,后者称为P位置;

更为严谨的定义是:

终止状态是P位置;

能够移动到P位置的状态时N位置;

只能到N位置的状态时P位置;

 

Nim问题的结论:

(Bouton‘s Theorem)对于一个Nim游戏的局面(a1,a2,...,an),它是P-position当且仅当a1^a2^...^an=0。

这个定理的证明却也不复杂,基本上就是按照两种position的证明来的。

 

证明:

根据定义,证明一种判断position的性质的方法的正确性,
只需证明三个命题:
  1、这个判断将所有terminal position判为P-position;因为终止位置只有一个
  2、根据这个判断被判为N-position的局面一定可以移动到某个P-position;
  3、根据这个判断被判为P-position的局面无法移动到某个P-position。重要
 
第一个命题显然,terminal position只有一个,就是全0,异或仍然是0。
第二个命题,对于某个局面(a1,a2,...,an),若a1^a2^...^an<>0,一定存在某个合法的移动,将ai改变成ai‘后满足a1^a2^...^ai‘^...^an=0。不妨设a1^a2^...^an=k,则一定存在某个ai,它的二进制表示在k的最高位上是1(否则k的最高位那个1是怎么得到的)。这时ai^k<ai一定成立。则我们可以将ai改变成ai‘=ai^k,此时a1^a2^...^ai‘^...^an=a1^a2^...^an^k=0。
第三个命题,对于某个局面(a1,a2,...,an),若a1^a2^...^an=0,一定不存在某个合法的移动,将ai改变成ai‘后满足a1^a2^...^ai‘^...^an=0。因为异或运算满足消去率,由a1^a2^...^an=a1^a2^...^ai‘^...^an可以得到ai=ai‘。所以将ai改变成ai‘不是一个合法的移动。证毕。
根据这个定理,我们可以在O(n)的时间内判断一个Nim的局面的性质,且如果它是N-position,也可以在O(n)的时间内找到所有的必胜策略。Nim问题就这样基本上完美的解决了。
 
对于poj这道题目,就是裸题了。
 1 #include<cstring>
 2 #include<cmath>
 3 #include<iostream>
 4 #include<algorithm>
 5 #include<cstdio>
 6 
 7 using namespace std;
 8 
 9 int n;
10 
11 int main()
12 {
13     while(~scanf("%d",&n))
14     {
15         int res=0,x;
16         for (int i=1;i<=n;i++)
17             scanf("%d",&x),res^=x;
18         if (res) printf("Yes\n");
19         else printf("No\n");    
20     }
21 }

 

博弈 Nim问题 POJ2234

标签:ike   根据   str   include   异或   bsp   mina   using   mat   

原文地址:http://www.cnblogs.com/fengzhiyuan/p/8072282.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!