码迷,mamicode.com
首页 > 其他好文 > 详细

pandas

时间:2017-12-25 11:30:33      阅读:135      评论:0      收藏:0      [点我收藏+]

标签:技术   ##   列排序   产生   plot   核心   merge   二维数组   imei   

基本使用

 

前情提要:

pandas 是我们数据分析的核心包

 

pandas相当于是表数据

 

series相当于表数据的一列




 

 

: Part a 关于基础: 

技术分享图片
  1 #结构化的数据分析
  2 
  3 pip3 install jupyter
  4 pip3 install pandas
  5 
  6 
  7 #import pandas as pd
  8 #import numpy as np
  9 
 10 #事例一:
 11 
 12 #s = pd.Series([1,3,5,np.NaN,8,4])
 13 #s
 14 
 15     Out[5]: 
 16     0    1.0
 17     1    3.0
 18     2    5.0
 19     3    NaN
 20     4    8.0
 21     5    4.0
 22     dtype: float64
 23 
 24 #事例二:
 25 
 26 #创建日期序列,里面有6个日期
 27 #datas = pd.date_range(‘20170821‘,periods=6)    
 28 #datas
 29 
 30     DatetimeIndex([‘2017-08-21‘, ‘2017-08-22‘, ‘2017-08-23‘, ‘2017-08-24‘,‘2017-08-25‘, ‘2017-08-26‘], dtype=‘datetime64[ns]‘, freq=‘D‘)
 31 
 32 
 33 #创建二维数组
 34 
 35 #创建6行4列的随机数,索引datas,列ABCD
 36 
 37 #data = pd.DataFrame(np.random.randn(6,4),index=datas,columns=list(‘ABCD‘))
 38 #data
 39 
 40                        A         B         C         D
 41     2017-08-21 -0.245344  0.260401 -2.003621  0.427142
 42     2017-08-22 -2.773848  1.604729 -0.711769 -0.677211
 43     2017-08-23  0.396086 -0.731911 -0.100242  0.966344
 44     2017-08-24  0.761821 -0.159621 -1.172729 -1.317056
 45     2017-08-25  0.186582  0.739702 -1.688458  0.480121
 46     2017-08-26 -0.519489 -0.002741  0.875164 -0.783657
 47 
 48 #data.values
 49 
 50     array([[ -2.45343824e-01,   2.60401419e-01,  -2.00362100e+00,  4.27142120e-01],
 51            [ -2.77384841e+00,   1.60472878e+00,  -7.11768546e-01,  -6.77211441e-01],
 52            [  3.96086166e-01,  -7.31910686e-01,  -1.00241967e-01,   9.66344486e-01],
 53            [  7.61820910e-01,  -1.59621471e-01,  -1.17272904e+00,   -1.31705593e+00],
 54            [  1.86582291e-01,   7.39702155e-01,  -1.68845777e+00,   4.80121151e-01],
 55            [ -5.19488872e-01,  -2.74128435e-03,   8.75164076e-01,  -7.83656946e-01]])
 56 
 57 
 58 #data.head(2)    #看前两行的数据
 59                        A         B         C         D
 60     2017-08-21 -0.245344  0.260401 -2.003621  0.427142
 61     2017-08-22 -2.773848  1.604729 -0.711769 -0.677211
 62 
 63 
 64 #data.T         #行列转置
 65 
 66        2017-08-21  2017-08-22  2017-08-23  2017-08-24  2017-08-25  2017-08-26
 67     A   -0.245344   -2.773848    0.396086    0.761821    0.186582   -0.519489
 68     B    0.260401    1.604729   -0.731911   -0.159621    0.739702   -0.002741
 69     C   -2.003621   -0.711769   -0.100242   -1.172729   -1.688458    0.875164
 70     D    0.427142   -0.677211    0.966344   -1.317056    0.480121   -0.783657
 71 
 72 
 73 #data.sort_index(axis=1)        #列正序
 74 
 75                        A         B         C         D
 76     2017-08-21 -0.245344  0.260401 -2.003621  0.427142
 77     2017-08-22 -2.773848  1.604729 -0.711769 -0.677211
 78     2017-08-23  0.396086 -0.731911 -0.100242  0.966344
 79     2017-08-24  0.761821 -0.159621 -1.172729 -1.317056
 80     2017-08-25  0.186582  0.739702 -1.688458  0.480121
 81     2017-08-26 -0.519489 -0.002741  0.875164 -0.783657
 82 
 83 
 84 #data.sort_index(axis=1,ascending=False)        #列倒序
 85 
 86                        D         C         B         A
 87     2017-08-21  0.427142 -2.003621  0.260401 -0.245344
 88     2017-08-22 -0.677211 -0.711769  1.604729 -2.773848
 89     2017-08-23  0.966344 -0.100242 -0.731911  0.396086
 90     2017-08-24 -1.317056 -1.172729 -0.159621  0.761821
 91     2017-08-25  0.480121 -1.688458  0.739702  0.186582
 92     2017-08-26 -0.783657  0.875164 -0.002741 -0.519489
 93 
 94 
 95 #data.sort_index(axis=0,ascending=False)        #行倒序
 96 
 97                        A         B         C         D
 98     2017-08-26 -0.519489 -0.002741  0.875164 -0.783657
 99     2017-08-25  0.186582  0.739702 -1.688458  0.480121
100     2017-08-24  0.761821 -0.159621 -1.172729 -1.317056
101     2017-08-23  0.396086 -0.731911 -0.100242  0.966344
102     2017-08-22 -2.773848  1.604729 -0.711769 -0.677211
103     2017-08-21 -0.245344  0.260401 -2.003621  0.427142
104 
105 
106 #data.sort_values(by=‘A‘)        # A列排序
107 
108                        A         B         C         D
109     2017-08-22 -2.773848  1.604729 -0.711769 -0.677211
110     2017-08-26 -0.519489 -0.002741  0.875164 -0.783657
111     2017-08-21 -0.245344  0.260401 -2.003621  0.427142
112     2017-08-25  0.186582  0.739702 -1.688458  0.480121
113     2017-08-23  0.396086 -0.731911 -0.100242  0.966344
114     2017-08-24  0.761821 -0.159621 -1.172729 -1.317056
115 
116 
117 #data[‘A‘] 或 data.A                #数据选择
118  
119     2017-08-21   -0.245344
120     2017-08-22   -2.773848
121     2017-08-23    0.396086
122     2017-08-24    0.761821
123     2017-08-25    0.186582
124     2017-08-26   -0.519489
125 
126 
127 data.loc[‘2017-08-21‘:‘2017-08-23‘]        #选择哪几行
128 
129                        A         B         C         D
130     2017-08-21 -0.245344  0.260401 -2.003621  0.427142
131     2017-08-22 -2.773848  1.604729 -0.711769 -0.677211
132     2017-08-23  0.396086 -0.731911 -0.100242  0.966344
133 
134 
135 #data.iloc[2:4]                            #行
136 
137                        A         B         C         D
138     2017-08-23  0.396086 -0.731911 -0.100242  0.966344
139     2017-08-24  0.761821 -0.159621 -1.172729 -1.317056
140 
141 
142 #data.loc[:,[‘B‘,‘C‘]]                #取出列
143 
144                        B         C
145     2017-08-21  0.260401 -2.003621
146     2017-08-22  1.604729 -0.711769
147     2017-08-23 -0.731911 -0.100242
148     2017-08-24 -0.159621 -1.172729
149     2017-08-25  0.739702 -1.688458
150     2017-08-26 -0.002741  0.875164
151 
152 
153 #data.loc[‘2017-08-21‘:‘2017-08-23‘,[‘B‘,‘C‘]]        #指定行和列
154 
155                        B         C
156     2017-08-21  0.260401 -2.003621
157     2017-08-22  1.604729 -0.711769
158     2017-08-23 -0.731911 -0.100242
159 
160 
161 #data.loc[‘2017-08-21‘,‘B‘]            #访问特定的值
162 
163     0.26040141861580018
164 
165 #data.at[pd.Timestamp(‘2017-08-21‘),‘B‘]    #比上面效率高
166     
167     #0.26040141861580018
168 
169 
170 #data.A = range(6)                #修改列数据
171 #data
172                 A         B         C         D
173     2017-08-21  0  0.260401 -2.003621  0.427142
174     2017-08-22  1  1.604729 -0.711769 -0.677211
175     2017-08-23  2 -0.731911 -0.100242  0.966344
176     2017-08-24  3 -0.159621 -1.172729 -1.317056
177     2017-08-25  4  0.739702 -1.688458  0.480121
178     2017-08-26  5 -0.002741  0.875164 -0.783657
179 
180 
181 #data.iloc[:,2:5] = 1000        #修改某几列
182 #data
183 
184                 A         B     C     D
185     2017-08-21  0  0.260401  1000  1000
186     2017-08-22  1  1.604729  1000  1000
187     2017-08-23  2 -0.731911  1000  1000
188     2017-08-24  3 -0.159621  1000  1000
189     2017-08-25  4  0.739702  1000  1000
190     2017-08-26  5 -0.002741  1000  1000
191 
192 
193 #事例三:
194 
195 #d = {‘A‘:1,‘B‘:pd.Timestamp("20160821"),‘C‘:list(range(4)),‘D‘:np.arange(4)}
196 #d
197 
198     {‘A‘: 1,
199      ‘B‘: Timestamp(‘2016-08-21 00:00:00‘),
200      ‘C‘: [0, 1, 2, 3],
201      ‘D‘: array([0, 1, 2, 3])}
202 
203 df = pd.DataFrame(d)
204 #df
205  
206        A          B  C  D
207     0  1 2016-08-21  0  0
208     1  1 2016-08-21  1  1
209     2  1 2016-08-21  2  2
210     3  1 2016-08-21  3  3
211 
212 #df.dtypes 
213     A             int64
214     B    datetime64[ns]
215     C             int64
216     D             int64
Click Me??

 

: Part b 关于DateFrame :

技术分享图片
#创建方式

#pd.DataFrame({‘one‘:[1,2,3,4],‘two‘:[4,3,2,1]})

        one  two
    0    1    4
    1    2    3
    2    3    2
    3    4    1


#pd.DataFrame({‘one‘:[1,2,3],‘two‘:[3,2,1]},index=list(‘abc‘))

       one  two
    a    1    3
    b    2    2
    c    3    1


#pd.DataFrame({‘one‘: pd.Series([1,2,3],index=[‘a‘,‘b‘,‘c‘]),‘two‘ :pd.Series([1,2,3,4],index=[‘b‘,‘a‘,‘c‘,‘d‘])})

       one   two
    a  1.0    2
    b  2.0    1
    c  3.0    3
    d  NaN    4
Click me again

 

: Part c 关于碎知识点

技术分享图片
 1 #obj = pd.read_csv(‘601318.csv‘)    #从文件中导入
 2 #obj.to_csv(‘new_obj.csv‘)            #导出
 3 
 4 #obj.index        #获取行索引
 5 #obj.columns    #获取列索引
 6 #obj.values        #返回所有的值
 7 #obj.rename(columns={‘close‘:‘new_close‘})    #给列改名称
 8 
 9 # loc 关于标签
10 
11 #obj.loc[:,[‘close‘,‘open‘]]        #所有行的两列
12 #obj.loc[0:10,[‘close‘,‘open‘]]        #前10行的两列 0可以省略
13 
14 # iloc 只能位置(下标)
15 
16 #obj.iloc[0:10,0:3]            #前10行的前3列
17 #obj[obj[‘open‘]<20]        #open小于20的
Click Click Click??

 

:Part d 关于pandas,numpy,pyplot综合使用

技术分享图片
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt


#资本显示
#dates = pd.date_range(‘20160821‘,periods=6)
#df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=list(‘ABCD‘))
#df

                    A            B            C            D
    2016-08-21    0.395062    -0.713272    0.560768    1.175623
    2016-08-22    0.487270    0.541010    -1.451927    -0.374084
    2016-08-23    1.190535    -0.017564    1.065334    -0.716946
    2016-08-24    -0.231604    0.890002    -2.085083    -0.421781
    2016-08-25    -0.282863    0.039613    0.900477    -1.048180
    2016-08-26    0.238394    -0.086092    0.002821    1.893919


# 增加一列 E

#df1 = df.reindex(index=dates[0:4],columns=list(df.columns) + [‘E‘])
#df1

                    A            B            C            D         E
    2016-08-21    0.395062    -0.713272    0.560768    1.175623    NaN
    2016-08-22    0.487270    0.541010    -1.451927    -0.374084    NaN
    2016-08-23    1.190535    -0.017564    1.065334    -0.716946    NaN
    2016-08-24    -0.231604    0.890002    -2.085083    -0.421781    NaN


# 修改列值

#df1.loc[dates[1:3],‘E‘] = 2
#df1

                    A            B            C            D         E
    2016-08-21    0.395062    -0.713272    0.560768    1.175623    NaN
    2016-08-22    0.487270    0.541010    -1.451927    -0.374084    2.0
    2016-08-23    1.190535    -0.017564    1.065334    -0.716946    2.0
    2016-08-24    -0.231604    0.890002    -2.085083    -0.421781    NaN


#有空数据行的丢掉

#df1.dropna()

                    A            B            C            D         E
    2016-08-22    0.487270    0.541010    -1.451927    -0.374084    2.0
    2016-08-23    1.190535    -0.017564    1.065334    -0.716946    2.0


# 有空的值用默认值替换

#df1.fillna(value=5)

                    A            B            C            D         E
    2016-08-21    0.395062    -0.713272    0.560768    1.175623    5.0
    2016-08-22    0.487270    0.541010    -1.451927    -0.374084    2.0
    2016-08-23    1.190535    -0.017564    1.065334    -0.716946    2.0
    2016-08-24    -0.231604    0.890002    -2.085083    -0.421781    5.0


# 判断是否有空数据

#pd.isnull(df1)

                  A           B          C          D         E
    2016-08-21    False    False    False    False    True
    2016-08-22    False    False    False    False    False
    2016-08-23    False    False    False    False    False
    2016-08-24    False    False    False    False    True


# 求行平均值,空数据不参与计算

#df1.mean()

    A    0.460316
    B    0.175044
    C   -0.477727
    D   -0.084297
    E    2.000000
    dtype: float64


# 求列平均值

#df1.mean(axis=1)

    A    0.460316
    B    0.175044
    C   -0.477727
    D   -0.084297
    E    2.000000
    dtype: float64


# 累加 (把列传给参数处理)

#df.apply(np.cumsum)

                    A              B            C            D
    2016-08-21    -2.251855    0.967517    0.045508    1.011237
    2016-08-22    -0.159759    -1.011472    0.642207    1.451304
    2016-08-23    0.595429    -1.164885    -1.323172    2.214757
    2016-08-24    0.582950    0.299636    1.421000    2.018076
    2016-08-25    0.624217    0.838486    1.840071    1.241466
    2016-08-26    0.102015    -0.251384    0.422820    0.166844


#每列的最大值 减去最小值

#df.apply(lambda x: x.max() - x.min())

    A    4.343951
    B    3.443510
    C    4.709552
    D    2.085859
    dtype: float64


#追加一行

#df.append(s,ignore_index=True)


####--------------  concat()---------------

#df = pd.DataFrame(np.random.randn(10,4),columns=list(‘ABCD‘))
#df

            A            B            C            D
    0    0.448883    0.667777    1.974642    -0.598013
    1    -0.384818    -1.616549    1.551960    0.201467
    2    -1.428748    0.122964    0.837514    1.102314
    3    0.634624    0.553064    -0.248767    0.019210
    4    2.518095    0.240933    -0.722795    -0.815324
    5    0.517742    -2.444094    1.270380    -0.160528
    6    -0.800297    -1.242557    -1.118255    0.616456
    7    0.953936    0.318387    0.151009    0.340203
    8    0.558308    -1.344539    0.846960    1.264978
    9    1.549733    1.496383    0.208102    1.265871

#df.iloc[:3]    # 取前3行
#df.iloc[3:7]    # 3-7行
#df.iloc[7:]    # 7-最后一行
#df1 = pd.concat([df.iloc[:3],df.iloc[3:7],df.iloc[7:]])    #等于上面3行
#df1

            A            B            C            D
    0    -0.151648    -0.077165    1.130773    1.587466
    1    -0.854935    0.490470    -0.438102    -0.066202
    2    -0.622838    -1.524100    -0.995986    -1.378272
    3    -0.718499    0.184935    -1.164265    1.127623
    4    2.180069    0.799651    1.630780    -1.592882
    5    -0.590875    -0.824192    -0.109713    -1.502221
    6    0.437851    2.268239    0.305557    -0.515982
    7    -1.084059    -0.325458    1.279105    -0.404447
    8    0.134603    0.012700    0.935611    1.017555
    9    0.521873    0.630876    -1.714364    -1.243454


#判断 df1 和 df 是否相等

#df == df1

          A          B          C          D
    0    True    True    True    True
    1    True    True    True    True
    2    True    True    True    True
    3    True    True    True    True
    4    True    True    True    True
    5    True    True    True    True
    6    True    True    True    True
    7    True    True    True    True
    8    True    True    True    True
    9    True    True    True    True


#(df == df1).all()

    A    True
    B    True
    C    True
    D    True

#(df == df1).all().all()
    True

###-------------    merge()    ----------

#left = pd.DataFrame({‘key‘:[‘foo‘,‘foo‘],‘rval‘:[1,2]})
#right = pd.DataFrame({‘key‘:[‘foo‘,‘foo‘],‘rval‘:[4,5]})
#left
        key     rval
    0    foo       1
    1    foo       2

#right 
        key     rval
    0    foo      4
    1    foo      5

#按照key关联

#pd.merge(left,right,on=‘key‘)

        key      rval_x    rval_y
    0    foo        1          4
    1    foo        1          5
    2    foo        2          4
    3    foo        2          5


###-------------  groupby()    -----------

#df = pd.DataFrame({‘A‘ : [‘foo‘,‘bar‘,‘foo‘,‘bar‘],
                  B : [one,two,one,two],
                  C: np.random.randn(4),
                  D: np.random.randn(4)
                  })
#df

         A     B      C                D
    0    foo    one    1.261140    1.109300
    1    bar    two    -2.072375    -0.533420
    2    foo    one    1.470090    0.243500
    3    bar    two    -0.243230    -0.721201


#分组
#df.groupby(‘A‘).sum()
                
    A        C          D
    bar     -2.315605    -1.254621
    foo     2.731229    1.352800


#df.groupby([‘A‘,‘B‘]).sum()
            
    A    B        C          D
    bar    two    -1.039401    -0.338988
    foo    one    -1.004454    1.169985


-------------------------序列---------------------

#s = pd.Series(np.random.randint(10,20,size=20))
#s
    0     13
    1     16
    2     11
    3     13
    4     17
    5     18
    6     12
    7     11
    8     13
    9     12
    10    18
    11    15
    12    19
    13    10
    14    16
    15    10
    16    16
    17    17
    18    10
    19    13


# 每个数字产生的次数
#s.value_counts()

    15    5
    18    3
    13    3
    17    2
    12    2
    11    2
    19    1
    16    1
    10    1

# 产生最多的数
#s.mode()
    0    15






----------------------------------------------------------
# 创建序列 包含空值

#s = pd.Series([1,3,5,np.nan,6,8],index=dates)
#s

    2016-08-21    1.0
    2016-08-22    3.0
    2016-08-23    5.0
    2016-08-24    NaN
    2016-08-25    6.0
    2016-08-26    8.0
    Freq: D, dtype: float64
    In [12]:


#s = pd.Series([1,3,5,np.nan,6,8],index=dates).shift(2)
#s

    2016-08-21    NaN
    2016-08-22    NaN
    2016-08-23    1.0
    2016-08-24    3.0
    2016-08-25    5.0
    2016-08-26    NaN
    Freq: D, dtype: float64


#df

                    A            B            C            D
    2016-08-21    -2.251855    0.967517    0.045508    1.011237
    2016-08-22    2.092096    -1.978989    0.596700    0.440067
    2016-08-23    0.755188    -0.153414    -1.965380    0.763453
    2016-08-24    -0.012479    1.464521    2.744173    -0.196681
    2016-08-25    0.041267    0.538850    0.419071    -0.776610
    2016-08-26    -0.522202    -1.089871    -1.417252    -1.074622

# 二维 减去 序列  (空值不参与运算)
#df.sub(s,axis=‘index‘)
    
                    A             B             C             D
    2016-08-21        NaN            NaN            NaN            NaN
    2016-08-22        NaN            NaN            NaN            NaN
    2016-08-23    -0.244812    -1.153414    -2.965380    -0.236547
    2016-08-24    -3.012479    -1.535479    -0.255827    -3.196681
    2016-08-25    -4.958733    -4.461150    -4.580929    -5.776610
    2016-08-26        NaN            NaN            NaN            NaN
One more again

 

:Part e 收尾 行列互换

技术分享图片
 1 #数据整形 (把数据的行和列互换)
 2 
 3 
 4 %matplotlib inline
 5 import pandas as pd
 6 import numpy as np
 7 import matplotlib.pyplot as plt
 8 
 9 #行索引
10 
11 #tuples = list(zip(*[[‘bar‘,‘bar‘,‘baz‘,‘baz‘,‘foo‘,‘foo‘,‘qux‘,‘qux‘],[‘one‘,‘two‘,‘one‘,‘two‘,‘one‘,‘two‘,‘one‘,‘two‘]]))
12 #tuples
13 
14     [(bar, one),
15      (bar, two),
16      (baz, one),
17      (baz, two),
18      (foo, one),
19      (foo, two),
20      (qux, one),
21      (qux, two)]
22 #index = pd.MultiIndex.from_tuples(tuples, names=[‘first‘,‘second‘])
23 #index
24 
25     MultiIndex(levels=[[bar, baz, foo, qux], [one, two]],
26                labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
27                names=[first, second])
28 
29 
30 #df = pd.DataFrame(np.random.randn(8,2),index=index,columns=[‘A‘,‘B‘])
31 #df
32                         A            B
33     first    second        
34     bar        one        1.109199    -0.482758
35             two        0.947951    1.284311
36     baz        one        -0.733705    -0.088907
37             two        1.146346    -0.946909
38     foo        one        0.254840    1.868951
39             two        1.052604    -0.684604
40     qux        one        0.133846    0.065647
41             two        -1.137040    1.010329
42 
43 
44 #把列索引变成行索引
45 
46 #stacked = df.stack()
47 #stacked
48 
49     first  second   
50     bar    one     A    1.109199
51                    B   -0.482758
52            two     A    0.947951
53                    B    1.284311
54     baz    one     A   -0.733705
55                    B   -0.088907
56            two     A    1.146346
57                    B   -0.946909
58     foo    one     A    0.254840
59                    B    1.868951
60            two     A    1.052604
61                    B   -0.684604
62     qux    one     A    0.133846
63                    B    0.065647
64            two     A   -1.137040
65                    B    1.010329
ending

 

pandas

标签:技术   ##   列排序   产生   plot   核心   merge   二维数组   imei   

原文地址:http://www.cnblogs.com/ugfly/p/8108063.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!