码迷,mamicode.com
首页 > 其他好文 > 详细

UVa 442 Matrix Chain Multiplication(矩阵链乘,模拟栈)

时间:2014-09-17 10:18:42      阅读:151      评论:0      收藏:0      [点我收藏+]

标签:style   http   color   io   os   ar   strong   for   art   

题意  计算给定矩阵链乘表达式需要计算的次数  当前一个矩阵的列数等于后一个矩阵的行数时  他们才可以相乘  不合法输出error

输入是严格合法的  即使只有两个相乘也会用括号括起来  而且括号里最多有两个 那么就很简单了 遇到字母直接入栈  遇到反括号计算后入栈  然后就得到结果了

#include<cstdio>
#include<cctype>
#include<cstring>
using namespace std;
const int N = 1000;
int st[N], row[N], col[N], r[N], c[N];

int main()
{
    int n, ans, top;
    scanf("%d", &n);
    char na[3], s[N];
    for(int i = 1; i <= n; ++i)
    {
        scanf("%s", na);
        int j = na[0] - 'A';
        scanf("%d%d", &row[j], &col[j]);
    }

    while(~scanf("%s", &s))
    {
        int i;
        for(i = 0 ; i < 26; ++i)
            c[i] = col[i], r[i] = row[i];
        ans = top = 0;

        for(i = 0; s[i] != '\0'; ++i)
        {
            if(isalpha(s[i]))
            {
                int j = s[i] - 'A';
                st[++top] = j;
            }

            else if(s[i] == ')')
            {
                if(r[st[top]] != c[st[top - 1]])  break;
                else
                {
                    --top;
                    c[st[top]] = c[st[top + 1]];
                    ans += (r[st[top]] * c[st[top]] * r[st[top + 1]]);
                }
            }
        }
        if(s[i] == '\0') printf("%d\n", ans);
        else printf("error\n");
    }
    return 0;
}

 Matrix Chain Multiplication 

Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary. However, the number of elementary multiplications needed strongly depends on the evaluation order you choose.

For example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix. There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).

The first one takes 15000 elementary multiplications, but the second one only 3500.

Your job is to write a program that determines the number of elementary multiplications needed for a given evaluation strategy.

Input Specification

Input consists of two parts: a list of matrices and a list of expressions.

The first line of the input file contains one integer n ( bubuko.com,布布扣 ), representing the number of matrices in the first part. The next n lines each contain one capital letter, specifying the name of the matrix, and two integers, specifying the number of rows and columns of the matrix.

The second part of the input file strictly adheres to the following syntax (given in EBNF):

SecondPart = Line { Line } <EOF>
Line       = Expression <CR>
Expression = Matrix | "(" Expression Expression ")"
Matrix     = "A" | "B" | "C" | ... | "X" | "Y" | "Z"

Output Specification

For each expression found in the second part of the input file, print one line containing the word "error" if evaluation of the expression leads to an error due to non-matching matrices. Otherwise print one line containing the number of elementary multiplications needed to evaluate the expression in the way specified by the parentheses.

Sample Input

9
A 50 10
B 10 20
C 20 5
D 30 35
E 35 15
F 15 5
G 5 10
H 10 20
I 20 25
A
B
C
(AA)
(AB)
(AC)
(A(BC))
((AB)C)
(((((DE)F)G)H)I)
(D(E(F(G(HI)))))
((D(EF))((GH)I))

Sample Output

0
0
0
error
10000

UVa 442 Matrix Chain Multiplication(矩阵链乘,模拟栈)

标签:style   http   color   io   os   ar   strong   for   art   

原文地址:http://blog.csdn.net/acvay/article/details/39337871

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!