码迷,mamicode.com
首页 > 其他好文 > 详细

Hadoop WordCount程序

时间:2017-12-28 16:06:44      阅读:192      评论:0      收藏:0      [点我收藏+]

标签:conf   leo   xtend   http   inf   info   接收   提交   list   

一、把所有Hadoop的依赖jar包导入buildpath,不用一个一个调,都导一遍就可以,因为是一个工程,所以覆盖是没有问题的

二、写wordcount程序

1.工程目录结构如下:

技术分享图片

2.写mapper程序:

package mapreduce;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
/**
 * LongWritable想当于long,这个是Hadoop特有的类型,因为是要网络间通信远程执行的,所以需要序列化,这个封装类型的序列化效果更好
 * Text等于String 
 * @author Q
 *
 */
public class WordCountMapper extends Mapper<LongWritable, Text, Text, LongWritable>{
    @Override
    protected void map(LongWritable key, Text value,
            Mapper<LongWritable, Text, Text, LongWritable>.Context context)
            throws IOException, InterruptedException {
        // key为字符偏移量 value为一行的内容
        String line = value.toString();
        String[] words = line.split(" ");
        //发送 <key,1>键值对到reducer
        for(String word:words){
            context.write(new Text(word), new LongWritable(1));
        }
    }

}

2.写reducer程序

package mapreduce;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class WordCountReducer extends Reducer<Text, LongWritable, Text, LongWritable>{
    @Override
    protected void reduce(Text key, Iterable<LongWritable> values,
            Reducer<Text, LongWritable, Text, LongWritable>.Context context)
            throws IOException, InterruptedException {
        long sub=0;
        //接收到<key,value>键值对,此时key为单词,value是一个迭代器,可以看成例如:<"hello",List{1,1,1,1,1}>
        for(LongWritable value:values){
            sub+=value.get();
        }
        context.write(key, new LongWritable(sub));
    
        
        
        
        
    }

}

3.写main函数

package mapreduce;


import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;



public class WordCount {
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        // 获取job对象,用来提交MapReduce任务
        Job job = Job.getInstance(conf);
        // 通过class路径设置jar
        job.setJarByClass(WordCount.class);
        // 设置mapper和reducer类
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);
        // 设置mapper的输出键值对的类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);
        // 设置reducer的输出键值对
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        // 输入输出文件的路径
        FileInputFormat.setInputPaths(job, new Path("hdfs://hadoop1:9000/wordcount/data/"));
        FileOutputFormat.setOutputPath(job, new Path("hdfs://hadoop1:9000/wordcount/output1"));
        //提交任务
        job.waitForCompletion(true);
    }

}

4.将工程打包成jar文件传到Linux平台上

打包:鼠标放在工程上右键---》点击export--》java--》JAE File

Linux上运行jar包的命令是

 hadoop jar wordcount.jar mapreduce.WordCount  有两个参数,第一个参数是你打包的jar的名字,第二个参数是你的main函数的全限定名

 

Hadoop WordCount程序

标签:conf   leo   xtend   http   inf   info   接收   提交   list   

原文地址:https://www.cnblogs.com/softzrp/p/8135800.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!