阿里妹导读:以深度学习为代表的人工智能在图像、语音和NLP领域带来了突破性的进展,在信息检索和个性化领域近几年也有不少公开文献,比如wide& deep实现了深度模型和浅层模型的结合,dssm用于计算语义相关性,deepfm增加了特征组合的能力,deep CF用深度学习实现协同过滤,rnn recommender 采用行为序列预估实现个性化推荐等。
工业级的信息检索或个性化系统是一个复杂的系统工程,深度学习的工业级应用需要具备三个条件:强大的系统计算能力,优秀的模型设计能力和合适的应用场景。今天,我们邀请了阿里搜索事业部资深算法专家三桐,介绍阿里在深度学习系统、深度学习算法和搜索应用落地的进展和思考,希望对大家有所启发。
深度学习在搜索的应用概括起来包括4个方面:
首先是系统:强大的深度学习训练平台和在线预测系统是深度学习应用的必要条件,目前我们的离线深度学习框架、在线深度学习框架和在线预测框架统一到tf,并实现了日志处理,特征抽取,模型训练和在线服务部署端到端的流程,极大提升了算法迭代效率;
其次是搜索应用:包括智能交互,语义搜索,智能匹配和智能决策四个技术方向,这四个方向的协同创新实现了搜索全链路的深度学习技术升级,并具备从传统的单场景单目标优化到多场景多目标联合优化的能力;