简介:
sqoop是一款用于hadoop和关系型数据库之间数据导入导出的工具。你可以通过sqoop把数据从数据库(比如mysql,oracle)导入到hdfs中;也可以把数据从hdfs中导出到关系型数据库中。通过将sqoop的操作命令转化为Hadoop的MapReduce作业进行导入导出,(通常只涉及到Map任务)即sqoop生成的Job主要是并发运行MapTask实现数据并行传输以提升数据传送速度和效率,如果使用Shell脚本来实现多线程数据传送则存在很大的难度Sqoop2(sqoop1.99.7)需要在Hadoop安装目录下的配置文件中设置代理,属于重量级嵌入安装,文中我们使用qoop1(Sqoop1.4.6)。
前提:(若不知道如何安装请看我前面写的hadoop分类的文章)
CloudDeskTop上安装了: hadoop-2.7.3 jdk1.7.0_79 mysql-5.5.32 sqoop-1.4.6 hive-1.2.2 master01和master02安装了: hadoop-2.7.3 jdk1.7.0_79 slave01、slave02、slave03安装了: hadoop-2.7.3 jdk1.7.0_79 zookeeper-3.4.10
一、安装:
1、上传安装包sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz到/install/目录下
2、解压:
[hadoop@CloudDeskTop install]$ tar -zxvf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz -C /software/
3、配置环境:
[hadoop@CloudDeskTop software]$ su -lc "vi /etc/profile"
JAVA_HOME=/software/jdk1.7.0_79 HADOOP_HOME=/software/hadoop-2.7.3 SQOOP_HOME=/software/sqoop-1.4.6 PATH=$PATH:$JAVA_HOME/bin:$JAVA_HOME/lib:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$SQOOP_HOME/bin export PATH JAVA_HOME HADOOP_HOME SQOOP_HOME
4、配置完环境后,执行如下语句,立即生效配置文件:
[hadoop@CloudDeskTop software]$ source /etc/profile
5、进入/software/sqoop-1.4.6/lib/目录,上传mysql-connector-java-5.1.43-bin.jar包
这个地方的数据库驱动包必须选择该版本(5.1.43),因为Sqoop需要对接MySql数据库,如果选择的数据库驱动包不是这个版本,很容易出错。
6、配置sqoop
[hadoop@CloudDeskTop software]$ cd /software/sqoop-1.4.6/bin/
[hadoop@CloudDeskTop bin]$ vi configure-sqoop
注释掉如下代码:用这个符号“:<<COMMENT”作为起始符,“COMMENT”作为结束符;
127 :<<COMMENT 128 ## Moved to be a runtime check in sqoop. 129 if [ ! -d "${HBASE_HOME}" ]; then 130 echo "Warning: $HBASE_HOME does not exist! HBase imports will fail." 131 echo ‘Please set $HBASE_HOME to the root of your HBase installation.‘ 132 fi 133 134 ## Moved to be a runtime check in sqoop. 135 if [ ! -d "${HCAT_HOME}" ]; then 136 echo "Warning: $HCAT_HOME does not exist! HCatalog jobs will fail." 137 echo ‘Please set $HCAT_HOME to the root of your HCatalog installation.‘ 138 fi 139 140 if [ ! -d "${ACCUMULO_HOME}" ]; then 141 echo "Warning: $ACCUMULO_HOME does not exist! Accumulo imports will fail." 142 echo ‘Please set $ACCUMULO_HOME to the root of your Accumulo installation.‘ 143 fi 144 if [ ! -d "${ZOOKEEPER_HOME}" ]; then 145 echo "Warning: $ZOOKEEPER_HOME does not exist! Accumulo imports will fail." 146 echo ‘Please set $ZOOKEEPER_HOME to the root of your Zookeeper installation.‘ 147 fi 148 COMMENT
二、启动(没说明的都默认是在hadoop用户下操作)
【0、在CloudDeskTop的root用户下启动mysql】
[root@CloudDeskTop ~]# cd /software/mysql-5.5.32/sbin/ && ./mysqld start && lsof -i:3306 && cd -
【1、在slave节点启动zookeeper集群(小弟中选个leader和follower)】
cd /software/zookeeper-3.4.10/bin/ && ./zkServer.sh start && cd - && jps
cd /software/zookeeper-3.4.10/bin/ && ./zkServer.sh status && cd -
【2、master01启动HDFS集群】cd /software/ && start-dfs.sh && jps
【3、master01启动YARN集群】cd /software/ && start-yarn.sh && jps
【YARN集群启动时,不会把另外一个备用主节点的YARN集群拉起来启动,所以在master02执行语句:】
cd /software/ && yarn-daemon.sh start resourcemanager && jps
【4、查看进程】
【6、查询sqoop版本来判断sqoop是否安装成功】
[hadoop@CloudDeskTop software]$ sqoop version
三、测试
说明:导入与导出操作的方向是以HDFS集群为基准参考点来定义的,如果数据从HDFS集群流出则表示导出,如果数据流入HDFS集群则表示导入Hive表中的数据实际上是存储到HDFS集群中的,因此对Hive表的导入与导出实际上都是在操作HDFS集群中的文件。
首先,在本地创建数据:
在hive数据库建表后上传到集群中表存放数据的路径下:
[hadoop@CloudDeskTop test]$ hdfs dfs -put testsqoop.out /user/hive/warehouse/mmzs.db/testsqoop
目标一、将hdfs集群的数据导入到mysql数据库中
1、在hive数据库mmzs中创建表,并导入数据
[hadoop@CloudDeskTop software]$ cd /software/hive-1.2.2/bin/ [hadoop@CloudDeskTop bin]$ ./hive hive> show databases; OK default mmzs mmzsmysql Time taken: 0.373 seconds, Fetched: 3 row(s) hive> create table if not exists mmzs.testsqoop(id int,name string,age int) row format delimited fields terminated by ‘\t‘; OK Time taken: 0.126 seconds hive> select * from mmzs.testsqoop; OK 1 ligang 2 2 chenghua 3 3 liqin 1 4 zhanghua 4 5 wanghua 1 6 liulinjin 5 7 wangxiaochuan 6 8 guchuan 2 9 xiaoyong 4 10 huping 6 Time taken: 0.824 seconds, Fetched: 10 row(s)
2、在mysql数据库中创建相同字段的表
[root@CloudDeskTop bin]# cd ~ [root@CloudDeskTop ~]# cd /software/mysql-5.5.32/bin/ [root@CloudDeskTop bin]# ./mysql -uroot -p123456 -P3306 -h192.168.154.134 -e "create database mmzs character set utf8" [root@CloudDeskTop bin]# ./mysql -uroot -p123456 -h192.168.154.134 -P3306 -Dmmzs Welcome to the MySQL monitor. Commands end with ; or \g. Your MySQL connection id is 12 Server version: 5.5.32 Source distribution Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved. Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners. Type ‘help;‘ or ‘\h‘ for help. Type ‘\c‘ to clear the current input statement. mysql> show tables; Empty set (0.00 sec) mysql> create table if not exists testsqoop(uid int(11),uname varchar(30),age int)engine=innodb charset=utf8 -> ; Query OK, 0 rows affected (0.06 sec) mysql> desc testsqoop; +-------+-------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +-------+-------------+------+-----+---------+-------+ | uid | int(11) | YES | | NULL | | | uname | varchar(30) | YES | | NULL | | | age | int(11) | YES | | NULL | | +-------+-------------+------+-----+---------+-------+ 3 rows in set (0.00 sec) mysql> select * from testsqoop; Empty set (0.01 sec)
3、使用Sqoop将Hive表中的数据导出到MySql数据库中(整个HDFS文件导出)
[hadoop@CloudDeskTop software]$ sqoop-export --help
17/12/30 21:54:38 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6 usage: sqoop export [GENERIC-ARGS] [TOOL-ARGS] Common arguments: --connect <jdbc-uri> Specify JDBC connect string --connection-manager <class-name> Specify connection manager class name --connection-param-file <properties-file> Specify connection parameters file --driver <class-name> Manually specify JDBC driver class to use --hadoop-home <hdir> Override $HADOOP_MAPRED_HOME_ARG --hadoop-mapred-home <dir> Override $HADOOP_MAPRED_HOME_ARG --help Print usage instructions -P Read password from console --password <password> Set authentication password --password-alias <password-alias> Credential provider password alias --password-file <password-file> Set authentication password file path --relaxed-isolation Use read-uncommitted isolation for imports --skip-dist-cache Skip copying jars to distributed cache --username <username> Set authentication username --verbose Print more information while working Export control arguments: --batch Indicates underlying statements to be executed in batch mode --call <arg> Populate the table using this stored procedure (one call per row) --clear-staging-table Indicates that any data in staging table can be deleted --columns <col,col,col...> Columns to export to table --direct Use direct export fast path --export-dir <dir> HDFS source path for the export -m,--num-mappers <n> Use ‘n‘ map tasks to export in parallel --mapreduce-job-name <name> Set name for generated mapreduce job --staging-table <table-name> Intermediate staging table --table <table-name> Table to populate --update-key <key> Update records by specified key column --update-mode <mode> Specifies how updates are performed when new rows are found with non-matching keys in database --validate Validate the copy using the configured validator --validation-failurehandler <validation-failurehandler> Fully qualified class name for ValidationFa ilureHandler --validation-threshold <validation-threshold> Fully qualified class name for ValidationTh reshold --validator <validator> Fully qualified class name for the Validator Input parsing arguments: --input-enclosed-by <char> Sets a required field encloser --input-escaped-by <char> Sets the input escape character --input-fields-terminated-by <char> Sets the input field separator --input-lines-terminated-by <char> Sets the input end-of-line char --input-optionally-enclosed-by <char> Sets a field enclosing character Output line formatting arguments: --enclosed-by <char> Sets a required field enclosing character --escaped-by <char> Sets the escape character --fields-terminated-by <char> Sets the field separator character --lines-terminated-by <char> Sets the end-of-line character --mysql-delimiters Uses MySQL‘s default delimiter set: fields: , lines: \n escaped-by: optionally-enclosed-by: ‘ --optionally-enclosed-by <char> Sets a field enclosing character Code generation arguments: --bindir <dir> Output directory for compiled objects --class-name <name> Sets the generated class name. This overrides --package-name. When combined with --jar-file, sets the input class. --input-null-non-string <null-str> Input null non-string representation --input-null-string <null-str> Input null string representation --jar-file <file> Disable code generation; use specified jar --map-column-java <arg> Override mapping for specific columns to java types --null-non-string <null-str> Null non-string representation --null-string <null-str> Null string representation --outdir <dir> Output directory for generated code --package-name <name> Put auto-generated classes in this package HCatalog arguments: --hcatalog-database <arg> HCatalog database name --hcatalog-home <hdir> Override $HCAT_HOME --hcatalog-partition-keys <partition-key> Sets the partition keys to use when importing to hive --hcatalog-partition-values <partition-value> Sets the partition values to use when importing to hive --hcatalog-table <arg> HCatalog table name --hive-home <dir> Override $HIVE_HOME --hive-partition-key <partition-key> Sets the partition key to use when importing to hive --hive-partition-value <partition-value> Sets the partition value to use when importing to hive --map-column-hive <arg> Override mapping for specific column to hive types. Generic Hadoop command-line arguments: (must preceed any tool-specific arguments) Generic options supported are -conf <configuration file> specify an application configuration file -D <property=value> use value for given property -fs <local|namenode:port> specify a namenode -jt <local|resourcemanager:port> specify a ResourceManager -files <comma separated list of files> specify comma separated files to be copied to the map reduce cluster -libjars <comma separated list of jars> specify comma separated jar files to include in the classpath. -archives <comma separated list of archives> specify comma separated archives to be unarchived on the compute machines. The general command line syntax is bin/hadoop command [genericOptions] [commandOptions] At minimum, you must specify --connect, --export-dir, and --table
#-m是指定map任务的个数
[hadoop@CloudDeskTop software]$ sqoop-export --export-dir ‘/user/hive/warehouse/mmzs.db/testsqoop‘ --fields-terminated-by ‘\t‘ --lines-terminated-by ‘\n‘ --connect ‘jdbc:mysql://192.168.154.134:3306/mmzs‘ --username ‘root‘ --password ‘123456‘ --table ‘testsqoop‘ -m 2
[hadoop@CloudDeskTop software]$ sqoop-export --export-dir ‘/user/hive/warehouse/mmzs.db/testsqoop‘ --fields-terminated-by ‘\t‘ --lines-terminated-by ‘\n‘ --connect ‘jdbc:mysql://192.168.154.134:3306/mmzs‘ --username ‘root‘ --password ‘123456‘ --table ‘testsqoop‘ -m 2 17/12/30 22:02:04 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6 17/12/30 22:02:04 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead. 17/12/30 22:02:04 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset. 17/12/30 22:02:04 INFO tool.CodeGenTool: Beginning code generation 17/12/30 22:02:05 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `testsqoop` AS t LIMIT 1 17/12/30 22:02:05 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `testsqoop` AS t LIMIT 1 17/12/30 22:02:05 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /software/hadoop-2.7.3 注: /tmp/sqoop-hadoop/compile/e2b7e669ef4d8d43016e44ce1cddb620/testsqoop.java使用或覆盖了已过时的 API。 注: 有关详细信息, 请使用 -Xlint:deprecation 重新编译。 17/12/30 22:02:11 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/e2b7e669ef4d8d43016e44ce1cddb620/testsqoop.jar 17/12/30 22:02:11 INFO mapreduce.ExportJobBase: Beginning export of testsqoop SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/software/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/software/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] 17/12/30 22:02:11 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar 17/12/30 22:02:13 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative 17/12/30 22:02:13 INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative 17/12/30 22:02:13 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps 17/12/30 22:02:22 INFO input.FileInputFormat: Total input paths to process : 1 17/12/30 22:02:22 INFO input.FileInputFormat: Total input paths to process : 1 17/12/30 22:02:23 INFO mapreduce.JobSubmitter: number of splits:2 17/12/30 22:02:23 INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative 17/12/30 22:02:24 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1514638990227_0001 17/12/30 22:02:25 INFO impl.YarnClientImpl: Submitted application application_1514638990227_0001 17/12/30 22:02:25 INFO mapreduce.Job: The url to track the job: http://master01:8088/proxy/application_1514638990227_0001/ 17/12/30 22:02:25 INFO mapreduce.Job: Running job: job_1514638990227_0001 17/12/30 22:03:13 INFO mapreduce.Job: Job job_1514638990227_0001 running in uber mode : false 17/12/30 22:03:13 INFO mapreduce.Job: map 0% reduce 0% 17/12/30 22:03:58 INFO mapreduce.Job: map 100% reduce 0% 17/12/30 22:03:59 INFO mapreduce.Job: Job job_1514638990227_0001 completed successfully 17/12/30 22:03:59 INFO mapreduce.Job: Counters: 30 File System Counters FILE: Number of bytes read=0 FILE: Number of bytes written=277282 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=484 HDFS: Number of bytes written=0 HDFS: Number of read operations=8 HDFS: Number of large read operations=0 HDFS: Number of write operations=0 Job Counters Launched map tasks=2 Data-local map tasks=2 Total time spent by all maps in occupied slots (ms)=79918 Total time spent by all reduces in occupied slots (ms)=0 Total time spent by all map tasks (ms)=79918 Total vcore-milliseconds taken by all map tasks=79918 Total megabyte-milliseconds taken by all map tasks=81836032 Map-Reduce Framework Map input records=10 Map output records=10 Input split bytes=286 Spilled Records=0 Failed Shuffles=0 Merged Map outputs=0 GC time elapsed (ms)=386 CPU time spent (ms)=4950 Physical memory (bytes) snapshot=216600576 Virtual memory (bytes) snapshot=1697566720 Total committed heap usage (bytes)=32874496 File Input Format Counters Bytes Read=0 File Output Format Counters Bytes Written=0 17/12/30 22:03:59 INFO mapreduce.ExportJobBase: Transferred 484 bytes in 105.965 seconds (4.5675 bytes/sec) 17/12/30 22:03:59 INFO mapreduce.ExportJobBase: Exported 10 records.
小结:从运行过程可以看出只有Map任务,没有Reduce任务。
4、在mysql数据库再次查询结果
mysql> select * from testsqoop;
+------+---------------+------+
| uid | uname | age |
+------+---------------+------+
| 1 | ligang | 2 |
| 2 | chenghua | 3 |
| 3 | liqin | 1 |
| 4 | zhanghua | 4 |
| 5 | wanghua | 1 |
| 6 | liulinjin | 5 |
| 7 | wangxiaochuan | 6 |
| 8 | guchuan | 2 |
| 9 | xiaoyong | 4 |
| 10 | huping | 6 |
+------+---------------+------+
10 rows in set (0.00 sec)
从结果可以证明数据导出到mysql数据库成功。
目标二、将mysql的数据导入到hdfs集群中
1、删除hive中mmzs数据库的testsqoop表的数据
确认真的删除了:
2、将mysql中的数据导入到hdfs群
A、指定部分查询数据导入到集群众
[hadoop@CloudDeskTop software]$ sqoop-import --append --connect ‘jdbc:mysql://192.168.154.134:3306/mmzs‘ --username ‘root‘ --password ‘123456‘ --query ‘select * from mmzs.testsqoop where uid>3 and $CONDITIONS‘ -m 1 --target-dir ‘/user/hive/warehouse/mmzs.db/testsqoop‘ --fields-terminated-by ‘\t‘ --lines-terminated-by ‘\n‘
[hadoop@CloudDeskTop software]$ sqoop-import --append --connect ‘jdbc:mysql://192.168.154.134:3306/mmzs‘ --username ‘root‘ --password ‘123456‘ --query ‘select * from mmzs.testsqoop where uid>3 and $CONDITIONS‘ -m 1 --target-dir ‘/user/hive/warehouse/mmzs.db/testsqoop‘ --fields-terminated-by ‘\t‘ --lines-terminated-by ‘\n‘ 17/12/30 22:40:54 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6 17/12/30 22:40:54 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead. 17/12/30 22:40:55 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset. 17/12/30 22:40:55 INFO tool.CodeGenTool: Beginning code generation 17/12/30 22:40:55 INFO manager.SqlManager: Executing SQL statement: select * from mmzs.testsqoop where uid>3 and (1 = 0) 17/12/30 22:40:55 INFO manager.SqlManager: Executing SQL statement: select * from mmzs.testsqoop where uid>3 and (1 = 0) 17/12/30 22:40:55 INFO manager.SqlManager: Executing SQL statement: select * from mmzs.testsqoop where uid>3 and (1 = 0) 17/12/30 22:40:55 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /software/hadoop-2.7.3 注: /tmp/sqoop-hadoop/compile/cd00e059648175875074eed7f4189e0b/QueryResult.java使用或覆盖了已过时的 API。 注: 有关详细信息, 请使用 -Xlint:deprecation 重新编译。 17/12/30 22:40:58 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/cd00e059648175875074eed7f4189e0b/QueryResult.jar 17/12/30 22:40:58 INFO mapreduce.ImportJobBase: Beginning query import. SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/software/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/software/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] 17/12/30 22:40:59 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar 17/12/30 22:41:01 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps 17/12/30 22:41:08 INFO db.DBInputFormat: Using read commited transaction isolation 17/12/30 22:41:09 INFO mapreduce.JobSubmitter: number of splits:1 17/12/30 22:41:09 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1514638990227_0003 17/12/30 22:41:10 INFO impl.YarnClientImpl: Submitted application application_1514638990227_0003 17/12/30 22:41:10 INFO mapreduce.Job: The url to track the job: http://master01:8088/proxy/application_1514638990227_0003/ 17/12/30 22:41:10 INFO mapreduce.Job: Running job: job_1514638990227_0003 17/12/30 22:41:54 INFO mapreduce.Job: Job job_1514638990227_0003 running in uber mode : false 17/12/30 22:41:54 INFO mapreduce.Job: map 0% reduce 0% 17/12/30 22:42:29 INFO mapreduce.Job: map 100% reduce 0% 17/12/30 22:42:31 INFO mapreduce.Job: Job job_1514638990227_0003 completed successfully 17/12/30 22:42:32 INFO mapreduce.Job: Counters: 30 File System Counters FILE: Number of bytes read=0 FILE: Number of bytes written=138692 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=87 HDFS: Number of bytes written=94 HDFS: Number of read operations=4 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=1 Other local map tasks=1 Total time spent by all maps in occupied slots (ms)=32275 Total time spent by all reduces in occupied slots (ms)=0 Total time spent by all map tasks (ms)=32275 Total vcore-milliseconds taken by all map tasks=32275 Total megabyte-milliseconds taken by all map tasks=33049600 Map-Reduce Framework Map input records=7 Map output records=7 Input split bytes=87 Spilled Records=0 Failed Shuffles=0 Merged Map outputs=0 GC time elapsed (ms)=170 CPU time spent (ms)=2020 Physical memory (bytes) snapshot=109428736 Virtual memory (bytes) snapshot=851021824 Total committed heap usage (bytes)=19091456 File Input Format Counters Bytes Read=0 File Output Format Counters Bytes Written=94 17/12/30 22:42:32 INFO mapreduce.ImportJobBase: Transferred 94 bytes in 91.0632 seconds (1.0322 bytes/sec) 17/12/30 22:42:32 INFO mapreduce.ImportJobBase: Retrieved 7 records. 17/12/30 22:42:32 INFO util.AppendUtils: Appending to directory testsqoop
在集群中查询是否真的导入了数据:
在hive数据库中中查询是否真的导入了数据:
从结果可以证明数据导入到hdfs集群成功。
删除集群数据,方便下次导入操作:
[hadoop@master01 software]$ hdfs dfs -rm -r /user/hive/warehouse/mmzs.db/testsqoop/part-m-00000
B、指定一张表,整个表的数据一起导入到集群中
sqoop-import --append --connect ‘jdbc:mysql://192.168.154.134:3306/mmzs‘ --username ‘root‘ --password ‘123456‘ --table testsqoop -m 1 --target-dir ‘/user/hive/warehouse/mmzs.db/testsqoop/‘ --fields-terminated-by ‘\t‘ --lines-terminated-by ‘\n‘
[hadoop@CloudDeskTop software]$ sqoop-import --append --connect ‘jdbc:mysql://192.168.154.134:3306/mmzs‘ --username ‘root‘ --password ‘123456‘ --table testsqoop -m 1 --target-dir ‘/user/hive/warehouse/mmzs.db/testsqoop/‘ --fields-terminated-by ‘\t‘ --lines-terminated-by ‘\n‘ 17/12/30 22:28:31 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6 17/12/30 22:28:31 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead. 17/12/30 22:28:32 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset. 17/12/30 22:28:32 INFO tool.CodeGenTool: Beginning code generation 17/12/30 22:28:33 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `testsqoop` AS t LIMIT 1 17/12/30 22:28:33 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `testsqoop` AS t LIMIT 1 17/12/30 22:28:33 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /software/hadoop-2.7.3 注: /tmp/sqoop-hadoop/compile/d427f3a0d1a3328c5dc9ae1bd6cbd988/testsqoop.java使用或覆盖了已过时的 API。 注: 有关详细信息, 请使用 -Xlint:deprecation 重新编译。 17/12/30 22:28:36 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/d427f3a0d1a3328c5dc9ae1bd6cbd988/testsqoop.jar 17/12/30 22:28:36 WARN manager.MySQLManager: It looks like you are importing from mysql. 17/12/30 22:28:36 WARN manager.MySQLManager: This transfer can be faster! Use the --direct 17/12/30 22:28:36 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path. 17/12/30 22:28:36 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql) 17/12/30 22:28:36 INFO mapreduce.ImportJobBase: Beginning import of testsqoop SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/software/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/software/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] 17/12/30 22:28:36 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar 17/12/30 22:28:38 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps 17/12/30 22:28:45 INFO db.DBInputFormat: Using read commited transaction isolation 17/12/30 22:28:45 INFO mapreduce.JobSubmitter: number of splits:1 17/12/30 22:28:46 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1514638990227_0002 17/12/30 22:28:46 INFO impl.YarnClientImpl: Submitted application application_1514638990227_0002 17/12/30 22:28:47 INFO mapreduce.Job: The url to track the job: http://master01:8088/proxy/application_1514638990227_0002/ 17/12/30 22:28:47 INFO mapreduce.Job: Running job: job_1514638990227_0002 17/12/30 22:29:29 INFO mapreduce.Job: Job job_1514638990227_0002 running in uber mode : false 17/12/30 22:29:29 INFO mapreduce.Job: map 0% reduce 0% 17/12/30 22:30:06 INFO mapreduce.Job: map 100% reduce 0% 17/12/30 22:30:07 INFO mapreduce.Job: Job job_1514638990227_0002 completed successfully 17/12/30 22:30:08 INFO mapreduce.Job: Counters: 30 File System Counters FILE: Number of bytes read=0 FILE: Number of bytes written=138842 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=87 HDFS: Number of bytes written=128 HDFS: Number of read operations=4 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=1 Other local map tasks=1 Total time spent by all maps in occupied slots (ms)=33630 Total time spent by all reduces in occupied slots (ms)=0 Total time spent by all map tasks (ms)=33630 Total vcore-milliseconds taken by all map tasks=33630 Total megabyte-milliseconds taken by all map tasks=34437120 Map-Reduce Framework Map input records=10 Map output records=10 Input split bytes=87 Spilled Records=0 Failed Shuffles=0 Merged Map outputs=0 GC time elapsed (ms)=177 CPU time spent (ms)=2490 Physical memory (bytes) snapshot=109060096 Virtual memory (bytes) snapshot=850882560 Total committed heap usage (bytes)=18972672 File Input Format Counters Bytes Read=0 File Output Format Counters Bytes Written=128 17/12/30 22:30:08 INFO mapreduce.ImportJobBase: Transferred 128 bytes in 89.4828 seconds (1.4304 bytes/sec) 17/12/30 22:30:08 INFO mapreduce.ImportJobBase: Retrieved 10 records. 17/12/30 22:30:08 INFO util.AppendUtils: Appending to directory testsqoop
在集群中查询是否真的导入了数据:
在hive数据库中中查询是否真的导入了数据:
从结果可以证明数据导入到hdfs集群成功。