码迷,mamicode.com
首页 > 其他好文 > 详细

[HNOI2013]消毒

时间:2018-01-04 14:21:58      阅读:185      评论:0      收藏:0      [点我收藏+]

标签:mat   范围   res   ref   二维   turn   解法   using   namespace   

题目大意:

网址:https://www.luogu.org/problemnew/show/3231
大意:a×b×c的三维空间里有a×b×c个点(x,y,z),其中有些点需要被消除。
消除的方法为:每次选定一个a1×b1×c1的三维区域,然后消除这个区域内的所有点。
消除的代价\(cost = min(a1,b1,c1);\)
现在询问消除此三维空间中所有需要消除点的最小代价为多少。
数据范围:\(a*b*c<=5000\)

题目解法:

显然题目可以转化为每次选择一个平面,然后消除该平面上的所有点。
先考虑二维空间,这不是超级无敌大水题吗。
二维不就是裸的二分图最小顶点覆盖吗?不明白怎么做的去AC一下这题:poj3041-Asteroids
三维咋办?
观察到\(a*b*c<=5000\),那么a、b、c中至少有一个是小于等于17的。
我们枚举最小的这一维是否切割,如果不切再跑最小顶点覆盖即可。
然后这题最要命的其实不是怎么做,而是怎么实现。
考虑一下建图怎么办,开个三维数组乱搞、旋转肯定是不行的。
其实可以把每一个点拆成三个坐标,然后连边(具体看代码,讲也讲不清)。

具体实现代码:

#include<bits/stdc++.h>
#define gi(x) scanf("%d",&x)
#define maxn 5005
#define INF 1e9+7
using namespace std;

int D,L[4],d,pos,g1,g2,g3,use[maxn];
struct Road{int to,next,blg;}t[2*maxn]; int head[maxn],cnt;
int mtc[maxn],vis[maxn],Ans;

void Add(int u,int v,int w){
    t[++cnt] = (Road){v,head[u]}; head[u] = cnt;
    t[++cnt] = (Road){u,head[v]}; head[v] = cnt;
    t[cnt-1].blg = t[cnt].blg = w;
}

//建图:
void Build(){
    gi(L[1]); gi(L[2]); gi(L[3]);
    pos = 1; cnt = 0;
    for(int i = 1; i <= 3; i ++)
        if(L[ i ] < L[ pos ])pos = i;
    if(pos == 1)g1 = L[1],g2 = L[2],g3 = L[3];
    if(pos == 2)g1 = L[2],g2 = L[1],g3 = L[3];
    if(pos == 3)g1 = L[3],g2 = L[1],g3 = L[2];
    for(int i = 1; i <= g2+g3; i ++)head[i] = 0;
    for(int i = 1; i <= L[1]; i ++)
        for(int j = 1; j <= L[2]; j ++)
            for(int k = 1; k <= L[3]; k ++){
                gi(d); if(!d)continue;
                if(pos == 1)Add(j , g2 + k , i );
                if(pos == 2)Add(i , g2 + k , j );
                if(pos == 3)Add(i , g2 + j , k );
            }
    return;
}

bool Hungarian(int u,int Vis){
    for(int i = head[u]; i; i = t[i].next){
        int v = t[i].to;
        if(vis[v] != Vis && !use[t[i].blg]){
            vis[v] = Vis;
            if(!mtc[v] || Hungarian(mtc[v],Vis)){
                mtc[v] = u; mtc[u] = v;
                return true;
            }
        }
    }return false;
}

inline int Solve(int ret){
    int Res = 0;
    for(int i = 1; i <= g2+g3; i ++)mtc[i] = 0;
    for(int i = 1; i <= g2+g3; i ++)vis[i] = 0;
    for(int i = 1; i <= g2; i ++){
        if(mtc[i])continue;
        if(Hungarian(i,i))Res++;
        if(Res + ret >= Ans)return Res + ret;
    }return Res + ret;
}

void Dfs(int nw,int ret){
    if(nw == L[pos]+1){Ans = min(Ans,Solve(ret)); return;}
    use[nw] = true; Dfs(nw+1,ret+1);
    use[nw] = false; Dfs(nw+1,ret);
}

int main(){
    gi(D);
    while(D--){
        Build();
        Ans = INF;
        Dfs(1,0);  printf("%d\n",Ans);
    }
    return 0;
}

[HNOI2013]消毒

标签:mat   范围   res   ref   二维   turn   解法   using   namespace   

原文地址:https://www.cnblogs.com/GuessYCB/p/8192722.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!