码迷,mamicode.com
首页 > 其他好文 > 详细

tensorflow 传入值-【老鱼学tensorflow】

时间:2018-01-05 10:28:21      阅读:119      评论:0      收藏:0      [点我收藏+]

标签:运行   post   方式   gpo   常量   机器   port   log   span   

上个文章中讲述了tensorflow中如何定义变量以及如何读取变量的方式,本节主要讲述关于传入值。
变量主要用于在tensorflow系统中经常会被改变的值,而对于传入值,它只是当tensorflow系统运行时预先设置的值,然后在运行期间不会被改变,有点类似函数中的不可变的输入参数。

传入值同常量之间的差别是:常量在tensorflow系统运行之前就已经确定了的值,无法对其进行任何的改变。
而传入值或称为placeholder是在系统运行前需要对其进行设置相应的值。
我们来看一个例子,这个例子只是用tensorflow来计算input1*input2的值:

import tensorflow as tf
# 计算output = input1*input2
# 定义placeholder时需要同时指定其类型,其实在机器学习的数据类型中一般都是为float32类型
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)

output = tf.multiply(input1, input2)

sess = tf.Session()
# 传入placeholder的值用其中的feed_dict来定义
print(sess.run(output, feed_dict={input1:8, input2:9}))

输出为:

72.0

是不是很简单。

tensorflow 传入值-【老鱼学tensorflow】

标签:运行   post   方式   gpo   常量   机器   port   log   span   

原文地址:https://www.cnblogs.com/dreampursuer/p/8016254.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!