如果没有年龄区间
画图发现ans=\(\sum_{i=1}^n dis_i + n * dis_u - 2 * \sum_{i=1}^{n} dis_{lca(i, u)}\)
对\(\sum_{i=1}^{n} dis_{lca(i, u)}\)用树链剖分,对于每个点,都向上走到根,记录每条路经过次数,询问时从u向上跳,每次加边权*覆盖次数即可
现在有年龄区间,加个前缀和,计算点权在[L,R]内的点到点u的距离,用主席树
然而主席树怎么pushdown,加上标记永久化
# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(3e6 + 10), __(1e7 + 10);
IL ll Read(){
RG char c = getchar(); RG ll x = 0, z = 1;
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
int n, m, Q, A, id[_], o[_];
int fst[_], nxt[_], to[_], w[_], size[_], fa[_], dfn[_], top[_], cnt, son[_], pos[_];
int rt[__], ls[__], rs[__], cov[__];
ll dis[_], sdis[_], sum[__];
IL bool Cmp(RG int x, RG int y){ return o[x] < o[y]; }
IL void Add(RG int u, RG int v, RG int f){ w[cnt] = f; to[cnt] = v; nxt[cnt] = fst[u]; fst[u] = cnt++; }
IL void Dfs1(RG int u){
size[u] = 1;
for(RG int e = fst[u]; e != -1; e = nxt[e]){
if(size[to[e]]) continue;
dis[to[e]] = dis[u] + w[e]; fa[to[e]] = u;
Dfs1(to[e]);
size[u] += size[to[e]];
if(size[to[e]] > size[son[u]]) son[u] = to[e];
}
}
IL void Dfs2(RG int u, RG int Top){
dfn[u] = ++cnt; top[u] = Top; pos[cnt] = u;
if(son[u]) Dfs2(son[u], Top);
for(RG int e = fst[u]; e != -1; e = nxt[e])
if(!dfn[to[e]]) Dfs2(to[e], to[e]);
}
IL void Build(RG int &x, RG int l, RG int r){
x = ++cnt;
if(l == r) return;
RG int mid = (l + r) >> 1;
Build(ls[x], l, mid); Build(rs[x], mid + 1, r);
}
IL void Modify(RG int &x, RG int l, RG int r, RG int L, RG int R){
sum[++cnt] = sum[x]; ls[cnt] = ls[x]; rs[cnt] = rs[x]; cov[cnt] = cov[x]; x = cnt;
sum[x] += dis[pos[R]] - dis[fa[pos[L]]];
if(L <= l && R >= r){ cov[x]++; return; }
RG int mid = (l + r) >> 1;
if(R <= mid) Modify(ls[x], l, mid, L, R);
else if(L > mid) Modify(rs[x], mid + 1, r, L, R);
else Modify(ls[x], l, mid, L, mid), Modify(rs[x], mid + 1, r, mid + 1, R);
}
IL ll Query(RG int x, RG int ad, RG int l, RG int r, RG int L, RG int R){
if(L <= l && R >= r) return sum[x] + 1LL * ad * (dis[pos[R]] - dis[fa[pos[L]]]);
RG int mid = (l + r) >> 1;
if(R <= mid) return Query(ls[x], ad + cov[x], l, mid, L, R);
if(L > mid) return Query(rs[x], ad + cov[x], mid + 1, r, L, R);
return Query(ls[x], ad + cov[x], l, mid, L, mid) + Query(rs[x], ad + cov[x], mid + 1, r, mid + 1, R);
}
IL ll Calc(RG int u, RG int i){
RG ll ans = 0;
while(top[u] ^ 1) ans += Query(rt[i], 0, 1, n, dfn[top[u]], dfn[u]), u = fa[top[u]];
ans += Query(rt[i], 0, 1, n, 1, dfn[u]);
return ans;
}
int main(RG int argc, RG char* argv[]){
n = Read(); Q = Read(); A = Read();
for(RG int i = 1; i <= n; ++i) o[i] = Read(), id[i] = i, fst[i] = -1;
sort(id + 1, id + n + 1, Cmp); sort(o + 1, o + n + 1);
for(RG int i = 1, aa, b, c; i < n; ++i) aa = Read(), b = Read(), c = Read(), Add(aa, b, c), Add(b, aa, c);
Dfs1(1); cnt = 0; Dfs2(1, 1); cnt = 0; Build(rt[0], 1, n);
for(RG int i = 1; i <= n; ++i){
RG int u = id[i]; rt[i] = rt[i - 1];
sdis[i] = sdis[i - 1] + dis[u];
while(top[u] ^ 1) Modify(rt[i], 1, n, dfn[top[u]], dfn[u]), u = fa[top[u]];
Modify(rt[i], 1, n, 1, dfn[u]);
}
for(RG ll L, R, u, a, b, ans = 0; Q; --Q){
u = Read(); a = Read(); b = Read();
L = min((a + ans) % A, (b + ans) % A);
R = max((a + ans) % A, (b + ans) % A);
L = lower_bound(o + 1, o + n + 1, L) - o;
R = lower_bound(o + 1, o + n + 1, R + 1) - o - 1;
ans = 1LL * (R - L + 1) * dis[u] + sdis[R] - sdis[L - 1] - 2LL * (Calc(u, R) - Calc(u, L - 1));
printf("%lld\n", ans);
}
return 0;
}