#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int maxn = 450;
const int INF = 1e9;
const LL INF_LL = 1LL<<60;
LL Dist[maxn][maxn];
int Have[maxn], Can[maxn];
int N, M;
int Full_Flow;
LL Limit;
struct Edge
{
Edge(){}
Edge(int from,int to,int cap,int flow):from(from),to(to),cap(cap),flow(flow){}
int from,to,cap,flow;
};
struct Dinic
{
int n,m,s,t; //结点数,边数(包括反向弧),源点与汇点编号
vector<Edge> edges; //边表 edges[e]和edges[e^1]互为反向弧
vector<int> G[maxn]; //邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
bool vis[maxn]; //BFS使用,标记一个节点是否被遍历过
int d[maxn]; //d[i]表从起点s到i点的距离(层次)
int cur[maxn]; //cur[i]表当前正访问i节点的第cur[i]条弧
void init(int n,int s,int t)
{
this->n=n,this->s=s,this->t=t;
for(int i=1;i<=n;i++) G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int cap)
{
edges.push_back( Edge(from,to,cap,0) );
edges.push_back( Edge(to,from,0,0) );
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BFS()
{
memset(vis,0,sizeof(vis));
queue<int> Q;//用来保存节点编号的
Q.push(s);
d[s]=0;
vis[s]=true;
while(!Q.empty())
{
int x=Q.front(); Q.pop();
for(int i=0; i<G[x].size(); i++)
{
Edge& e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=true;
d[e.to] = d[x]+1;
Q.push(e.to);
}
}
}
return vis[t];
}
//a表示从s到x目前为止所有弧的最小残量
//flow表示从x到t的最小残量
int DFS(int x,int a)
{
//printf("%d %d\n", x, a);
if(x==t || a==0)return a;
int flow=0,f;//flow用来记录从x到t的最小残量
for(int& i=cur[x]; i<G[x].size(); i++)
{
Edge& e=edges[G[x][i]];
if(d[x]+1==d[e.to] && (f=DFS( e.to,min(a,e.cap-e.flow) ) )>0 )
{
e.flow +=f;
edges[G[x][i]^1].flow -=f;
flow += f;
a -= f;
if(a==0) break;
}
}
return flow;
}
int Maxflow()
{
int flow=0;
while(BFS())
{
memset(cur,0,sizeof(cur));
flow += DFS(s,INF);
}
return flow;
}
}DC;
bool OK(LL Upper)
{
DC.init(2*N+2, 0, 2*N+1);
for(int i=1; i<=N; i++){
DC.AddEdge(0, i, Have[i]);
DC.AddEdge(i+N, 2*N+1, Can[i]);
}
for(int i=1; i<=N; i++)
for(int j=1; j<=N; j++)
if(Dist[i][j] <= Upper)
DC.AddEdge(i, j+N, INF);
return (Full_Flow == DC.Maxflow());
}
int main(void)
{
while(~scanf("%d %d", &N, &M)){
Full_Flow = 0;
Limit = 0;
for(int i=1; i<=N; i++){
scanf("%d %d", &Have[i], &Can[i]);
Full_Flow += Have[i];///记录所有牛的数量
}
for(int i=1; i<=N; i++)
for(int j=1; j<=N; j++)///跑 Floyd 前的初始化
if(i==j) Dist[i][j] = 0;
else Dist[i][j] = INF_LL;
int From, To;
LL Cost;
for(int i=1; i<=M; i++){
scanf("%d %d %lld", &From, &To, &Cost);
Dist[From][To] = Dist[To][From] = min(Dist[From][To], Cost);///有重边,只需记录最小的花费那条边
}
for(int k=1; k<=N; k++)///Floyd 算法
for(int i=1; i<=N; i++)
for(int j=1; j<=N; j++)
if(Dist[i][k] < INF_LL && Dist[k][j] < INF_LL)
Dist[i][j] = min(Dist[i][j], Dist[i][k]+Dist[k][j]);
Limit = 0;///再次强调这里的时间是覆盖时间,所以我们找出花费最大的两点互大花费作为二分上界
for(int i=1; i<=N; i++)
for(int j=1; j<=N; j++)
if(Dist[i][j] < INF_LL)
Limit = max(Limit, Dist[i][j]);
if(!OK(Limit)) puts("-1");///给出最充裕的时间都无法满流肯定是无解了
else{
LL L = 0, R = Limit, ans;
while(L <= R){///二分答案
LL mid = L + ((R-L)>>1);
if(!OK(mid)) L = mid+1;
else ans = mid, R = mid-1;
}
printf("%lld\n", ans);
}
}
return 0;
}