标签:style blog http color io os ar for div
题意:中文不解释
解题思路:
中间矩阵为
5 2
12 5
初始矩阵为
2(根号b的系数)
5(a的系数)
解题代码:
1 #include<iostream> 2 #include<cstdio> 3 #include<cmath> 4 #include<cstring> 5 #include<algorithm> 6 #include<queue> 7 using namespace std; 8 int mod; 9 void mul(int a[4][4], int b[4][4]) 10 { 11 int c[4][4]; 12 memset(c,0,sizeof(c)); 13 for(int i=0;i<4;i++) 14 for(int j=0;j<4;j++) 15 for(int k=0;k<4;k++) 16 c[i][j] = (c[i][j]+a[i][k]*b[k][j])%mod; 17 memcpy(a,c,sizeof(c)); 18 } 19 void quick_mod(int a[4][4], int b) 20 { 21 int c[4][4]; 22 memset(c,0,sizeof(c)); 23 for(int i=0;i<4;i++) c[i][i] = 1; 24 while(b) 25 { 26 if(b&1) mul(c,a); 27 mul(a,a); 28 b>>=1; 29 } 30 memcpy(a,c,sizeof(c)); 31 } 32 33 int main() 34 { 35 int i,j,k,m,n; 36 int a[4][4]; 37 int f[5] = {0,2,4,6,9}; 38 while(scanf("%d%d",&k,&mod)==2) 39 { 40 if(k<5) { printf("%d\n",f[k]%mod); continue; } 41 memset(a,0,sizeof(a)); 42 a[0][0] = a[2][0] = a[3][0] = a[0][1] = a[1][2] = a[2][3] = 1; 43 quick_mod(a,k-4); 44 int ans = (9*a[0][0]+6*a[1][0]+4*a[2][0]+2*a[3][0])%mod; 45 printf("%d\n",ans); 46 } 47 }
HDU 2256 Problem of Precision 矩阵快速幂 + 共轭数
标签:style blog http color io os ar for div
原文地址:http://www.cnblogs.com/zyue/p/3978134.html