码迷,mamicode.com
首页 > 其他好文 > 详细

Hadoop源码篇--Client源码

时间:2018-01-08 23:44:52      阅读:236      评论:0      收藏:0      [点我收藏+]

标签:tle   idt   mapred   monitor   cto   ceo   div   运算   metrics   

一。前述

今天起剖析源码,先从Client看起,因为Client在MapReduce的过程中承担了很多重要的角色。

二。MapReduce框架主类

代码如下:

public static void main(String[] args) throws Exception {
        
        Configuration conf = new Configuration(true);
        //job  作业
        Job  job = Job.getInstance(conf);
        
         // Create a new Job
//         Job job = Job.getInstance();
         job.setJarByClass(MyWC.class);
         
         // Specify various job-specific parameters     
         job.setJobName("myjob");
         
//         job.setInputPath(new Path("in"));
//         job.setOutputPath(new Path("out"));
         
         Path input = new Path("/user/root");
        FileInputFormat.addInputPath(job, input );
         
         Path output = new Path("/output/wordcount");
         if(output.getFileSystem(conf).exists(output)){
             output.getFileSystem(conf).delete(output,true);
         }
        FileOutputFormat.setOutputPath(job, output );
         
         
         
         
         job.setMapperClass(MyMapper.class);
         job.setMapOutputKeyClass(Text.class);
         job.setMapOutputValueClass(IntWritable.class);
         job.setReducerClass(MyReducer.class);

         // Submit the job, then poll for progress until the job is complete
         job.waitForCompletion(true);

第一步,先分析Job,可以看见源码中Job实现了public class Job extends JobContextImpl implements JobContext

然后JobContext实现了 MRJobConfig,可以看见其中有很多配置

技术分享图片

因为job中传的参数为conf,所以这里的配置即对应我们的配置文件中的属性值。

  Job  job = Job.getInstance(conf);

 挑几个重要的看下:

public static final int DEFAULT_MAP_MEMORY_MB = 1024;//默认的Mapper任务内存大小。

第二步,分析提交过程 job.waitForCompletion(true);   追踪源码发现主要实现这个类


JobStatus submitJobInternal(Job job, Cluster cluster)
  throws ClassNotFoundException, InterruptedException, IOException
  1. Checking the input and output specifications of the job.//检查输入输出路径
  2. Computing the InputSplits for the job.//检查切片
  3. Setup the requisite accounting information for the DistributedCache of the job, if necessary.
  4. Copying the job‘s jar and configuration to the map-reduce system directory on the distributed file-system.
  5. Submitting the job to the JobTracker and optionally monitoring it‘s status.

      在此方法中,中重点看下此方法 int maps = writeSplits(job, submitJobDir);

追踪后具体实现可知

private <T extends InputSplit>
  int writeNewSplits(JobContext job, Path jobSubmitDir) throws IOException,
      InterruptedException, ClassNotFoundException {
    Configuration conf = job.getConfiguration();
    InputFormat<?, ?> input =
      ReflectionUtils.newInstance(job.getInputFormatClass(), conf);

    List<InputSplit> splits = input.getSplits(job);
    T[] array = (T[]) splits.toArray(new InputSplit[splits.size()]);

    // sort the splits into order based on size, so that the biggest
    // go first
    Arrays.sort(array, new SplitComparator());
    JobSplitWriter.createSplitFiles(jobSubmitDir, conf,
        jobSubmitDir.getFileSystem(conf), array);
    return array.length;
  }


追踪job.getInputFormatClass()可以发现如下代码: 

public Class<? extends InputFormat<?,?>> getInputFormatClass() throws ClassNotFoundException { return (Class<? extends InputFormat<?,?>>) conf.getClass(INPUT_FORMAT_CLASS_ATTR, TextInputFormat.class);
//根据用户配置文件首先取用,如果没有被取用则使用默认输入格式TextInputFormat
}

所以可得知用户的默认输入类是TextInputformat类并且继承关系如下:

技术分享图片

TextInputforMat-->FileinputFormat-->InputFormat

 追踪 List<InputSplit> splits = input.getSplits(job);可以得到如下源码:

最为重要的一个源码!!!!!!!!!!!

 

public List<InputSplit> getSplits(JobContext job) throws IOException {
    Stopwatch sw = new Stopwatch().start();
    long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job));如果用户设置则取用户,没有是1
    long maxSize = getMaxSplitSize(job);//如果用户设置则取用户,没有取最大值

    // generate splits
    List<InputSplit> splits = new ArrayList<InputSplit>();
    List<FileStatus> files = listStatus(job);
    for (FileStatus file: files) {
      Path path = file.getPath();//取输入文件的大小和路径
      long length = file.getLen();
      if (length != 0) {
        BlockLocation[] blkLocations;
        if (file instanceof LocatedFileStatus) {
          blkLocations = ((LocatedFileStatus) file).getBlockLocations();
        } else {
          FileSystem fs = path.getFileSystem(job.getConfiguration());
          blkLocations = fs.getFileBlockLocations(file, 0, length);//获得所有块的位置。
        }
        if (isSplitable(job, path)) {
          long blockSize = file.getBlockSize();
          long splitSize = computeSplitSize(blockSize, minSize, maxSize);//获得切片大小

          long bytesRemaining = length;
          while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
            int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);//这一块传参传的是切块的偏移量,返回这个块的索引
            splits.add(makeSplit(path, length-bytesRemaining, splitSize,
                        blkLocations[blkIndex].getHosts(),//根据当前块的索引号取出来块的位置包括副本的位置 然后传递给切片,然后切片知道往哪运算。即往块的位置信息计算
                        blkLocations[blkIndex].getCachedHosts()));
            bytesRemaining -= splitSize;
          }

          if (bytesRemaining != 0) {
            int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
            splits.add(makeSplit(path, length-bytesRemaining, bytesRemaining,
                       blkLocations[blkIndex].getHosts(),
                       blkLocations[blkIndex].getCachedHosts()));
          }
        } else { // not splitable
          splits.add(makeSplit(path, 0, length, blkLocations[0].getHosts(),
                      blkLocations[0].getCachedHosts()));
        }
      } else { 
        //Create empty hosts array for zero length files
        splits.add(makeSplit(path, 0, length, new String[0]));
      }
    }
    // Save the number of input files for metrics/loadgen
    job.getConfiguration().setLong(NUM_INPUT_FILES, files.size());
    sw.stop();
    if (LOG.isDebugEnabled()) {
      LOG.debug("Total # of splits generated by getSplits: " + splits.size()
          + ", TimeTaken: " + sw.elapsedMillis());
    }
    return splits;
  }

 

 1.long splitSize = computeSplitSize(blockSize, minSize, maxSize);追踪源码发现
protected long computeSplitSize(long blockSize, long minSize, long maxSize) {
    return Math.max(minSize, Math.min(maxSize, blockSize));
  }

 切片大小默认是块的大小!!!!

假如让切片大小 < 块的大小则更改配置的最大值MaxSize,让其小于blocksize

假如让切片大小 > 块的大小则更改配置的最小值MinSize,让其大于blocksize

通过FileInputFormat.setMinInputSplitSize即可。

 

 2. int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining) 追踪源码发现

 

 protected int getBlockIndex(BlockLocation[] blkLocations, 
                              long offset) {
    for (int i = 0 ; i < blkLocations.length; i++) {
      // is the offset inside this block?
      if ((blkLocations[i].getOffset() <= offset) &&
          (offset < blkLocations[i].getOffset() + blkLocations[i].getLength())){//切片要大于>=块的起始量,小于一个块的末尾量。
        return i;//返回这个块
      }
    }
    BlockLocation last = blkLocations[blkLocations.length -1];
    long fileLength = last.getOffset() + last.getLength() -1;
    throw new IllegalArgumentException("Offset " + offset + 
                                       " is outside of file (0.." +
                                       fileLength + ")");
  }

 3. splits.add(makeSplit(path, length-bytesRemaining, splitSize, blkLocations[blkIndex].getHosts()

创建切片的时候,一个切片对应一个mapperr任务,所以创建切片的四个位置(path,0,10,host)

根据host可知mapper任务的计算位置,则对应计算向数据移动!!!!块是逻辑的,并没有真正切割数据。!!

4.上述getSplits方法最终得到一个切片的清单,清单的数目就是mapper的数量!!即开始方法的入口 int maps = writeSplits(job, submitJobDir);返回值。

5.计算向数据移动时会拉取只属于自己的文件。

 

持续更新中。。。。,欢迎大家关注我的公众号LHWorld.

 

 

 

技术分享图片

 

Hadoop源码篇--Client源码

标签:tle   idt   mapred   monitor   cto   ceo   div   运算   metrics   

原文地址:https://www.cnblogs.com/LHWorldBlog/p/8244881.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!