题目链接 Bipartite Segments
题意 给出一个无偶环的图,现在有$q$个询问。求区间$[L, R]$中有多少个子区间$[l, r]$
满足$L <= l <= r <= R$,并且一个只包含$l$到$r$这些点的无向图为二分图。
因为整张图没有偶环,所以在这道题中如果某个无向图没有环,那个这个无向图就是二分图
Tarjan求出每个环的标号最小点和标号最大点。
令$f[i]$为能保证$[i, j]$这个区间构成的图都是二分图的$j$的最大值,则$f[i]$是不下降的
当询问区间$[L, R]$的时候,即求$\begin{equation*}\sum_{i=L}^Rmin(f(i), R) - i + 1\end{equation*}$
二分然后分类讨论即可
#include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i) #define dec(i, a, b) for (int i(a); i >= (b); --i) typedef long long LL; const int N = 3e5 + 10; int f[N], dfn[N], stk[N]; int n, m, ti = 0; int q, top; LL s[N]; vector <int> v[N]; void dfs(int x, int fa){ dfn[x] = ++ti; stk[++top] = x; for (auto u : v[x]){ if (u == fa) continue; if (dfn[u]){ if (dfn[u] < dfn[x]){ int mx = u, mi = u; for (int p = top; stk[p] != u; --p){ mi = min(mi, stk[p]); mx = max(mx, stk[p]); } f[mi] = mx; } } else dfs(u, x); } --top; } int main(){ scanf("%d%d", &n, &m); rep(i, 1, m){ int x, y; scanf("%d%d", &x, &y); v[x].push_back(y); v[y].push_back(x); } rep(i, 1, n) if (!dfn[i]) dfs(i, 0); rep(i, 1, n) if (f[i]) --f[i]; else f[i] = n; dec(i, n - 1, 1) f[i] = min(f[i], f[i + 1]); rep(i, 1, n) s[i] = s[i - 1] + f[i]; scanf("%d", &q); while (q--){ int x, y; scanf("%d%d", &x, &y); if (f[x] > y){ LL num = y - x + 1; printf("%lld\n", 0ll - 1ll * (x + y) * num / 2 + 1ll * y * num + num); continue; } int l = x, r = y; while (l + 1 < r){ int mid = (l + r) >> 1; if (f[mid] <= y) l = mid; else r = mid - 1; } int t; if (f[r] <= y) t = r; else t = l; int u = t + 1; LL num = y - x + 1; LL ans = num - 1ll * (x + y) * num / 2; LL et = y - u + 1; ans = ans + (s[t] - s[x - 1]); if (et > 0) ans = ans + 1ll * y * et; printf("%lld\n", ans); } return 0; }