码迷,mamicode.com
首页 > 其他好文 > 详细

51nod1237 最大公约数之和 V3

时间:2018-01-20 11:08:45      阅读:183      评论:0      收藏:0      [点我收藏+]

标签:opened   prim   blog   验证   print   color   mod   src   技术分享   

n<=1e10,问1<=i<=n,1<=j<=n,gcd(i,j)的和%1e9+7。

QAQ自推的第一道,虽然很简单而且走了很多弯路而且推错了一次被ccz大爷调教,但还是挺感动的。。

其实在推数论之前可以先打个$\mu$和$\varphi $的表,推个两三步就验证一下,否则如果是大数论题,推错的后果是极其严重的。

$\sum_{i=1}^{n}\sum_{j=1}^{n}(i,j)$

$=\sum_{d=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[(i,j)=d]$

严重错误!d不见了。上面这个式子最后等于1.

$\sum_{i=1}^{n}\sum_{j=1}^{n}(i,j)$

$=\sum_{d=1}^{n}d\sum_{i=1}^{n}\sum_{j=1}^{n}[(i,j)=d]$

闪一句:反演!

$=\sum_{d=1}^{n}d\sum_{d|t,t\leqslant n}\mu(\frac{t}{d})(\left \lfloor \frac{n}{t} \right \rfloor)^2$

闪一句:这里尝试$t=kd$,结果失败了。正确操作是把t放前面……

$=\sum_{t=1}^{n}(\left \lfloor \frac{n}{t} \right \rfloor)^2\sum_{d|t}d\mu(\frac{t}{d})$

$=\sum_{t=1}^{n}(\left \lfloor \frac{n}{t} \right \rfloor)^2\varphi(t)$

漂亮!把欧拉函数丢去杜教筛即可。

技术分享图片
 1 #include<string.h>
 2 #include<stdlib.h>
 3 #include<stdio.h>
 4 #include<math.h>
 5 //#include<assert.h>
 6 #include<algorithm> 
 7 //#include<iostream>
 8 //#include<bitset>
 9 using namespace std;
10 
11 #define LL long long
12 LL n,m;
13 const int mod=1e9+7;
14 #define maxn 5000011
15 int phi[maxn],sumphi[maxn],prime[maxn],lp; bool notprime[maxn];
16 void pre(int n)
17 {
18     phi[1]=1; sumphi[1]=1;
19     for (int i=2;i<=n;i++)
20     {
21         if (!notprime[i]) prime[++lp]=i,phi[i]=i-1;
22         sumphi[i]=sumphi[i-1]+phi[i];
23         sumphi[i]-=sumphi[i]>=mod?mod:0;
24         for (int j=1,tmp;j<=lp && 1ll*prime[j]*i<=n;j++)
25         {
26             notprime[tmp=prime[j]*i]=1;
27             if (i%prime[j]) phi[tmp]=phi[i]*(prime[j]-1);
28             else {phi[tmp]=phi[i]*prime[j]; break;}
29         }
30     }
31 }
32 
33 struct Edge{LL to;int v,next;};
34 #define maxh 1000007
35 struct Hash
36 {
37     int first[maxh],le; Edge edge[maxn];
38     Hash() {le=2;}
39     void insert(LL y,int v) {int x=y%maxh; Edge &e=edge[le]; e.to=y; e.v=v; e.next=first[x]; first[x]=le++;}
40     int find(LL y) {int x=y%maxh; for (int i=first[x];i;i=edge[i].next) if (edge[i].to==y) return edge[i].v; return -1;}
41 }h;
42 
43 int calc(LL n)
44 {
45     if (n<=m) return sumphi[n];
46     int tmp=h.find(n); if (tmp!=-1) return tmp;
47     LL ans=1ll*n%mod*((n+1)%mod)%mod*((mod+1)>>1)%mod;
48     for (LL i=2,last;i<=n;i=last+1)
49     {
50         last=n/(n/i);
51         ans-=((last-i+1)%mod)*1ll*calc(n/i)%mod;
52         ans+=ans<0?mod:0;
53     }
54     h.insert(n,ans);
55     return ans;
56 }
57 
58 int main()
59 {
60     scanf("%lld",&n);
61     m=pow(n,2.0/3); pre(m);
62     LL ans=0;
63     for (LL i=1,last;i<=n;i=last+1)
64     {
65         last=n/(n/i);
66         ans+=(calc(last)-calc(i-1))*1ll*((n/i)%mod)%mod*((n/i)%mod)%mod;
67         ans+=ans<0?mod:0,ans-=ans>=mod?mod:0;
68     }
69     printf("%lld\n",ans);
70     return 0;
71 }
View Code

 

51nod1237 最大公约数之和 V3

标签:opened   prim   blog   验证   print   color   mod   src   技术分享   

原文地址:https://www.cnblogs.com/Blue233333/p/8319021.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!