码迷,mamicode.com
首页 > 其他好文 > 详细

Simple_LinearRegression_Test

时间:2018-01-21 13:44:41      阅读:107      评论:0      收藏:0      [点我收藏+]

标签:print   numpy   回归   log   test   pos   its   最小   有一个   

一个简单的线性回归程序

#简单线性回归:只有一个自变量 y=k*x+b 预测使 (y-y*)^2  最小
 1 import numpy as np
 2 
 3 def fitSLR(x, y):
 4     num = len(x)
 5     dinominator = 0  # 分母
 6     numerator = 0    # 分子
 7     for i in range(0, num):
 8         numerator += (x[i] - np.mean(x)) * (y[i] - np.mean(y))
 9         dinominator += (x[i] - np.mean(x)) ** 2
10     b1 = numerator / float(dinominator)
11     b0 = np.mean(y) - b1 * np.mean(x)
12     return b1, b0
13 
14 def test(x, b1, b0):
15     y = b0 + b1 * x
16     print(y)
17 
18 x = [1, 3, 2, 1, 3]
19 y = [14, 24, 18, 17, 27]
20 b1, b0 = fitSLR(x, y)
21 x_input = float(input("请输入要测试的数据:"))
22 test(x_input, b1, b0)

 

Simple_LinearRegression_Test

标签:print   numpy   回归   log   test   pos   its   最小   有一个   

原文地址:https://www.cnblogs.com/KevinK/p/8323844.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!