码迷,mamicode.com
首页 > 其他好文 > 详细

UVA - 11178-Morley’s Theorem

时间:2014-09-18 18:51:04      阅读:264      评论:0      收藏:0      [点我收藏+]

标签:style   http   io   os   ar   strong   for   div   art   

bubuko.com,布布扣

就是给出一个等边三角形的三个顶点坐标


然后每个角的三等分线会交错成一个三角形,求出这个三角形的顶点坐标


一开始,我题意理解错了……还以为是任意三角形,所以代码能够处理任意三角形的情况


我的做法:


通过旋转点的位置得到这些三等分线的直线方程,然后用高斯消元求交点


我的代码:

#include<iostream>
#include<map>
#include<string>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
struct dot
{
	double x,y;
	dot(){}
	dot(double a,double b){x=a;y=b;}
	dot operator -(const dot &a){return dot(x-a.x,y-a.y);}
	dot operator +(const dot &a){return dot(x+a.x,y+a.y);}
	double mod(){return sqrt(pow(x,2)+pow(y,2));}
	double mul(const dot &a){return x*a.x+y*a.y;}
};
void gauss(double a[10][10])
{
	int i,j,k,t,n=2;
	for(i=0;i<n;i++)
	{
		t=i;
		for(j=i+1;j<n;j++)
			if(fabs(a[j][i])>fabs(a[t][i]))
				t=i;
		if(i!=t)
			for(j=i;j<=n;j++)
				swap(a[i][j],a[t][j]);
		if(a[i][i]!=0)
			for(j=i+1;j<n;j++)
				for(k=n;k>=i;k--)
					a[j][k]-=a[j][i]/a[i][i]*a[i][k];
	}
	for(i=n-1;i>-1;i--)
	{
		for(j=i+1;j<n;j++)
			a[i][n]-=a[i][j]*a[j][n];
		a[i][n]/=a[i][i];
	}
}
dot ro(dot a,dot b,double c)
{
	a=a-b;
	a=dot(a.x*cos(c)-a.y*sin(c),a.x*sin(c)+a.y*cos(c));
	return a+b;
}
int main()
{
	pair<dot,dot>t;
	dot a[3];
	double b,c[10][10];
	int n,i;
	cin>>n;
	while(n--)
	{
		for(i=0;i<3;i++)
			scanf("%lf%lf",&a[i].x,&a[i].y);
		
		t.first=a[0]-a[1];t.second=a[2]-a[1];
		b=acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
		t.first=a[1];t.second=ro(a[2],a[1],b);
		c[0][0]=t.first.y-t.second.y;c[0][1]=t.second.x-t.first.x;c[0][2]=t.second.x*t.first.y-t.second.y*t.first.x;
		
		t.first=a[1]-a[2];t.second=a[0]-a[2];
		b=2*acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
		t.first=a[2];t.second=ro(a[0],a[2],b);
		c[1][0]=t.first.y-t.second.y;c[1][1]=t.second.x-t.first.x;c[1][2]=t.second.x*t.first.y-t.second.y*t.first.x;
	
		gauss(c);
		
		printf("%.6lf %.6lf ",c[0][2],c[1][2]);
		
		t.first=a[1]-a[2];t.second=a[0]-a[2];
		b=acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
		t.first=a[2];t.second=ro(a[0],a[2],b);
		c[0][0]=t.first.y-t.second.y;c[0][1]=t.second.x-t.first.x;c[0][2]=t.second.x*t.first.y-t.second.y*t.first.x;
		
		t.first=a[1]-a[0];t.second=a[2]-a[0];
		b=2*acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
		t.first=a[0];t.second=ro(a[1],a[0],b);
		c[1][0]=t.first.y-t.second.y;c[1][1]=t.second.x-t.first.x;c[1][2]=t.second.x*t.first.y-t.second.y*t.first.x;
	
		gauss(c);
		
		printf("%.6lf %.6lf ",c[0][2],c[1][2]);
		
		t.first=a[1]-a[0];t.second=a[2]-a[0];
		b=acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
		t.first=a[0];t.second=ro(a[1],a[0],b);
		c[0][0]=t.first.y-t.second.y;c[0][1]=t.second.x-t.first.x;c[0][2]=t.second.x*t.first.y-t.second.y*t.first.x;
		
		t.first=a[0]-a[1];t.second=a[2]-a[1];
		b=2*acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
		t.first=a[1];t.second=ro(a[2],a[1],b);
		c[1][0]=t.first.y-t.second.y;c[1][1]=t.second.x-t.first.x;c[1][2]=t.second.x*t.first.y-t.second.y*t.first.x;
	
		gauss(c);
		
		printf("%.6lf %.6lf\n",c[0][2],c[1][2]);
	}
}
原题:

Problem D
Morley’s Theorem
Input:
Standard Input

Output: Standard Output

 Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral triangle DEF.

bubuko.com,布布扣

 

Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian coordinates of D, E and F given the coordinates of A, B, and C.

 

Input

First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain six integers bubuko.com,布布扣. This six integers actually indicates that the Cartesian coordinates of point A, B and C are bubuko.com,布布扣 respectively. You can assume that the area of triangle ABC is not equal to zero, bubuko.com,布布扣 and the points A, B and C are in counter clockwise order.

 

Output

For each line of input you should produce one line of output. This line contains six floating point numbers bubuko.com,布布扣 separated by a single space. These six floating-point actually means that the Cartesian coordinates of D, E and F are bubuko.com,布布扣 respectively. Errors less than  bubuko.com,布布扣 will be accepted.

 

Sample Input   Output for Sample Input

2 
1 1 2 2 1 2 
0 0 100 0 50 50

1.316987 1.816987 1.183013 1.683013 1.366025 1.633975

56.698730 25.000000 43.301270 25.000000 50.000000 13.397460

                  

Problemsetters: Shahriar Manzoor

Special Thanks: Joachim Wulff

 

Source

Root :: Prominent Problemsetters :: Shahriar Manzoor

Root :: AOAPC I: Beginning Algorithm Contests -- Training Guide (Rujia Liu) :: Chapter 4. Geometry :: Geometric Computations in 2D :: Examples

UVA - 11178-Morley’s Theorem

标签:style   http   io   os   ar   strong   for   div   art   

原文地址:http://blog.csdn.net/stl112514/article/details/39376613

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!