1功能
- 鼠标选取目标 S按键取消重新选择
- 共享内存目标框 中心 X Y 边框W H
///////////////////////////////////////////////////////////////////////// // Author: Zhongze Hu // Subject: Circulant Structure of Tracking-by-detection with Kernels // Algorithm: ECCV12, Jo~ao F. Henriques, Exploiting the Circulant // Structure of Tracking-by-detection with Kernels // Matlab code: http://home.isr.uc.pt/~henriques/circulant/index.html // Date: 01/13/2015 ///////////////////////////////////////////////////////////////////////// #include "CSK_Tracker.h" #include <iostream> #include <fstream> using namespace std; bool tracking_flag = false; cv::Mat org, dst, img, tmp; int Wid, Hei, X, Y; void on_mouse(int event, int x, int y, int flags, void *ustc)//event鼠标事件代号,x,y鼠标坐标,flags拖拽和键盘操作的代号 { static cv::Point pre_pt = (-1, -1);//初始坐标 static cv::Point cur_pt = (-1, -1);//实时坐标 char temp[16]; if (!tracking_flag) { if (event == CV_EVENT_LBUTTONDOWN)//左键按下,读取初始坐标,并在图像上该点处划圆 { //org.copyTo(img);//将原始图片复制到img中 org = img.clone(); sprintf(temp, "(%d,%d)", x, y); pre_pt = cv::Point(x, y); putText(img, temp, pre_pt, cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0, 255), 1, 8);//在窗口上显示坐标 circle(img, pre_pt, 2, cv::Scalar(255, 0, 0, 0), CV_FILLED, CV_AA, 0);//划圆 imshow("img", img); } else if (event == CV_EVENT_MOUSEMOVE && !(flags & CV_EVENT_FLAG_LBUTTON))//左键没有按下的情况下鼠标移动的处理函数 { img.copyTo(tmp);//将img复制到临时图像tmp上,用于显示实时坐标 sprintf(temp, "(%d,%d)", x, y); cur_pt = cv::Point(x, y); putText(tmp, temp, cur_pt, cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0, 255));//只是实时显示鼠标移动的坐标 imshow("img", tmp); } else if (event == CV_EVENT_MOUSEMOVE && (flags & CV_EVENT_FLAG_LBUTTON))//左键按下时,鼠标移动,则在图像上划矩形 { img.copyTo(tmp); sprintf(temp, "(%d,%d)", x, y); cur_pt = cv::Point(x, y); putText(tmp, temp, cur_pt, cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0, 255)); rectangle(tmp, pre_pt, cur_pt, cv::Scalar(0, 255, 0, 0), 1, 8, 0);//在临时图像上实时显示鼠标拖动时形成的矩形 imshow("img", tmp); } else if (event == CV_EVENT_LBUTTONUP)//左键松开,将在图像上划矩形 { //org.copyTo(img); img.copyTo(tmp); sprintf(temp, "(%d,%d)", x, y); cur_pt = cv::Point(x, y); putText(img, temp, cur_pt, cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0, 255)); circle(img, pre_pt, 2, cv::Scalar(255, 0, 0, 0), CV_FILLED, CV_AA, 0); rectangle(img, pre_pt, cur_pt, cv::Scalar(0, 255, 0, 0), 1, 8, 0);//根据初始点和结束点,将矩形画到img上 imshow("img", img); img.copyTo(tmp); //截取矩形包围的图像,并保存到dst中 int width = abs(pre_pt.x - cur_pt.x); int height = abs(pre_pt.y - cur_pt.y); if (width == 0 || height == 0) { printf("width == 0 || height == 0"); return; } Wid = width; Hei = height; X = pre_pt.x + width / 2; Y = pre_pt.y + height / 2; tracking_flag = true; //dst = org(Rect(min(cur_pt.x, pre_pt.x), min(cur_pt.y, pre_pt.y), width, height)); //namedWindow("dst"); //imshow("dst", dst); //waitKey(0); } } } void main() { TCHAR szName[] = TEXT("Local\\FHY_SYSTEM_0"); TrackBox BOX; hMapFile = CreateFileMapping( INVALID_HANDLE_VALUE, // use paging file NULL, // default security PAGE_READWRITE, // read/write access 0, // maximum object size (high-order DWORD) BUF_SIZE, // maximum object size (low-order DWORD) szName); // name of mapping object if (hMapFile == NULL) { /*printf(TEXT("Could not create file mapping object (%d).\n"), GetLastError());*/ return; } pBuffer = (LPTSTR)MapViewOfFile(hMapFile, // handle to map object FILE_MAP_ALL_ACCESS, // read/write permission 0, 0, BUF_SIZE); if (pBuffer == NULL) { /*printf(TEXT("Could not map view of file (%d).\n"), GetLastError());*/ CloseHandle(hMapFile); return; } BOX.x = 0; BOX.y = 0; BOX.flag = tracking_flag; CSK_Tracker my_tracker; string file_name; ifstream infile("input/Dudek/Name.txt"); //getline(infile,file_name); //my_tracker.run_tracker("..\\..\\data\\tiger.avi",Point(16 + 36/2,28 + 36/2),36); //my_tracker.run_tracker("..\\..\\data\\boy.avi",Point(374+68/2, 77+68/2),68); //my_tracker.run_tracker("..\\..\\CSK\\data\\oldman.avi",Point(186+50/2, 118+50/2),50); //VideoCapture capture("input/bike1.avi"); //Mat frame = imread(file_name); ////if (!capture.isOpened()) //if(frame.empty()) //{ // cout << "open video failed!" << endl; // return; //} //int frame_count = int(capture.get(CV_CAP_PROP_FRAME_COUNT)); int frame_count = 1490; //double rate = capture.get(CV_CAP_PROP_FPS); //int width = capture.get(CV_CAP_PROP_FRAME_WIDTH); //int height = capture.get(CV_CAP_PROP_FRAME_HEIGHT); int width = 320; int height = 240; cv::Mat frame; cv::Mat frame_last; cv::Mat alphaf; cv::VideoCapture capture(0); capture.set(CV_CAP_PROP_FRAME_WIDTH, 1920); capture.set(CV_CAP_PROP_FRAME_HEIGHT, 1080); while (true) { if (!tracking_flag) { capture.read(img); cv::namedWindow("img");//定义一个img窗口 cv::setMouseCallback("img", on_mouse, 0);//调用回调函数 imshow("img", img); memcpy(BOX_DATA, &BOX, sizeof(TrackBox)); char key = cvWaitKey(10); if (key == ‘q‘) break; } else { cv::Point pos_first = cv::Point(X, Y); int target_sz[2] = { Hei,Wid }; my_tracker.tracke_one(pos_first,target_sz, capture, tracking_flag); } } }
//#ifdef _CSK_TRACKER_H_ //#define _CSK_TRACKER_H_ #include "opencv2/core/core.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/highgui/highgui.hpp" #include <iostream> #include <fstream> #include <Windows.h> #define FRAME_SIZE 1920*1080 #define BUF_SIZE FRAME_SIZE*60 typedef struct { int x; int y; /*int zx; int zy;*/ int width; int height; int flag = 0; }TrackBox; //目标检测的上下顶点; typedef struct { int width; int height; int type; }imgInfHead; #define BUF_SIZE FRAME_SIZE*10 #define FRAME_SIZE 1920*1080 extern HANDLE hMapFile; extern LPCTSTR pBuffer; #define BOX_DATA (char*)pBuffer+FRAME_SIZE*0 // #define SEND_IMG00_HEAD (char*)pBuffer+FRAME_SIZE*1 //图像头信息首地址 #define SEND_IMG00_DATA (char*)pBuffer+FRAME_SIZE*2 //图像数据区首地址 //using namespace cv; using namespace std; class CSK_Tracker { public: CSK_Tracker(); ~CSK_Tracker(); TrackBox BOX; void hann2d(cv::Mat& m); cv::Mat dense_guess_kernel(double digma, cv::Mat x, cv::Mat y); cv::Mat dense_guess_kernel(double digma, cv::Mat x); cv::Mat get_subwindow(cv::Mat im, cv::Point pos, int* sz, cv::Mat cos_window); //void run_tracker(string video_name, Point pos, int target_sz); //void tracke_one(ifstream &infile, cv::Point pos_first, int frame_count, int* target_sz, cv::VideoCapture capture); void tracke_one(cv::Point pos_first, int* target_sz, cv::VideoCapture capture, bool &tracking_flag); void tracke_one(ifstream &infile, cv::Point pos_first, int frame_count, int* target_sz, cv::VideoCapture capture); cv::Mat conj(cv::Mat a); cv::Mat c_div(cv::Mat a, cv::Mat b);//a./b cv::Mat c_mul(cv::Mat a, cv::Mat b);//a.*b cv::Mat fft2d(cv::Mat src); void print_mat(cv::Mat a, string file_name);//打印矩阵,debug用 void print_img(cv::Mat a, string file_name);//打印图片灰度值 private: static const double padding; static const double output_sigma_factor; static const double sigma; static const double lambda; static const double interp_factor; static const string test_file; }; //#endif
#include "CSK_Tracker.h" using namespace std; const double CSK_Tracker::padding = 1; const double CSK_Tracker::output_sigma_factor = 1.0/16; const double CSK_Tracker::sigma = 0.2; const double CSK_Tracker::lambda = 0.01; const double CSK_Tracker::interp_factor = 0.075; const string CSK_Tracker::test_file = "H:\\CV\\CSK\\data\\result_c.txt"; HANDLE hMapFile; LPCTSTR pBuffer; CSK_Tracker::CSK_Tracker() { } CSK_Tracker::~CSK_Tracker() { } void CSK_Tracker::hann2d(cv::Mat& m) { cv::Mat a(m.rows,1,CV_32FC1); cv::Mat b(m.cols,1,CV_32FC1); for (int i = 0; i < m.rows; i++) { float t = 0.5 * (1 - cos(2*CV_PI*i/(m.rows - 1))); a.at<float>(i,0) = t; } for (int i = 0; i < m.cols; i++) { float t = 0.5 * (1 - cos(2*CV_PI*i/(m.cols - 1))); b.at<float>(i,0) = t; } m = a * b.t(); } cv::Mat CSK_Tracker::dense_guess_kernel(double sigma, cv::Mat x, cv::Mat y) { //xf = fft2(x) cv::Mat xf = fft2d(x); vector<cv::Mat> xf_ri(xf.channels()); cv::split(xf,xf_ri); //xx = x(:)‘ * x(:); double xx = 0; cv::Scalar sum_x = cv::sum(x.mul(x)); for (int i = 0; i < sum_x.cols; i++) { xx += sum_x[i]; } //yf = fft2(y) cv::Mat yf = fft2d(y); vector<cv::Mat> yf_ri(yf.channels()); cv::split(yf,yf_ri); //yy = y(:)‘ * y(:); double yy = 0; cv::Scalar sum_y = sum(y.mul(y)); for (int i = 0; i < sum_y.cols; i++) { yy += sum_y[i]; } //xyf = xf. * conj(yf) cv::Mat xyf = c_mul(xf,conj(yf)); //xy = real(circshift(ifft2(xyf), floor(size(x)/2))); idft(xyf,xyf); xyf = xyf/(xyf.rows*xyf.cols); vector<cv::Mat> xy_ri(xyf.channels()); cv::split(xyf,xy_ri); cv::Mat xy = xy_ri[0]; int cx = xy.cols/2; int cy = xy.rows/2; cv::Mat q0(xy, cv::Rect(0, 0, cx, cy)); // Top-Left - Create a ROI per quadrant cv::Mat q1(xy, cv::Rect(cx, 0, cx, cy)); // Top-Right cv::Mat q2(xy, cv::Rect(0, cy, cx, cy)); // Bottom-Left cv::Mat q3(xy, cv::Rect(cx, cy, cx, cy)); // Bottom-Right cv::Mat tmp; // swap quadrants (Top-Left with Bottom-Right) q0.copyTo(tmp); q3.copyTo(q0); tmp.copyTo(q3); q1.copyTo(tmp); // swap quadrant (Top-Right with Bottom-Left) q2.copyTo(q1); tmp.copyTo(q2); int numel_x = x.rows*x.cols; cv::Mat k; exp((-1/pow(sigma,2))*(cv::max)((xx+yy-2*xy)/numel_x,0),k); return k; } cv::Mat CSK_Tracker::dense_guess_kernel(double sigma, cv::Mat x) { //xf = fft2(x) cv::Mat xf = fft2d(x); vector<cv::Mat> xf_ri(xf.channels()); cv::split(xf,xf_ri); //xx = x(:)‘ * x(:); double xx = 0; cv::Scalar sum_x = sum(x.mul(x)); for (int i = 0; i < sum_x.cols; i++) { xx += sum_x[i]; } //yf = xf //yy = xx cv::Mat yf; xf.copyTo(yf); double yy = xx; vector<cv::Mat> yf_ri(yf.channels()); cv::split(yf,yf_ri); //xyf = xf. * conj(yf) cv::Mat xyf = c_mul(xf,conj(yf)); //xy = real(circshift(ifft2(xyf), floor(size(x)/2))); idft(xyf,xyf); xyf = xyf/(xyf.rows*xyf.cols); vector<cv::Mat> xy_ri(xyf.channels()); cv::split(xyf,xy_ri); cv::Mat xy = xy_ri[0]; //print_mat(xy,"xyf.txt"); int cx = xy.cols/2; int cy = xy.rows/2; cv::Mat q0(xy, cv::Rect(0, 0, cx, cy)); // Top-Left - Create a ROI per quadrant cv::Mat q1(xy, cv::Rect(cx, 0, cx, cy)); // Top-Right cv::Mat q2(xy, cv::Rect(0, cy, cx, cy)); // Bottom-Left cv::Mat q3(xy, cv::Rect(cx, cy, cx, cy)); // Bottom-Right cv::Mat tmp; // swap quadrants (Top-Left with Bottom-Right) q0.copyTo(tmp); q3.copyTo(q0); tmp.copyTo(q3); q1.copyTo(tmp); // swap quadrant (Top-Right with Bottom-Left) q2.copyTo(q1); tmp.copyTo(q2); int numel_x = x.rows*x.cols; cv::Mat k; exp((-1/pow(sigma,2))*(cv::max)((xx+yy-2*xy)/numel_x,0),k); return k; } cv::Mat CSK_Tracker::get_subwindow(cv::Mat im, cv::Point pos, int* sz, cv::Mat cos_window) { //xs = floor(pos(2)) + (1:sz(2)) - floor(sz(2)/2); //ys = floor(pos(1)) + (1:sz(1)) - floor(sz(1)/2); vector<int> xs(sz[1]); vector<int> ys(sz[0]); for (int i = 0; i < sz[1]; i++) { xs[i] = floor(pos.x) + i - floor(sz[1]/2); xs[i] = (cv::max)((cv::min)(xs[i],im.cols - 1),0); } for (int i = 0; i < sz[0]; i++){ ys[i] = floor(pos.y) + i - floor(sz[0]/2); ys[i] = (cv::max)((cv::min)(ys[i],im.cols - 1),0); } //cout << xs[0]<<" "<< xs[1]<< " "<<xs[2]<<‘\n‘; //cout << ys[0]<<" "<< ys[1]<< " "<<ys[2]; //xs(xs < 1) = 1; //ys(ys < 1) = 1; //xs(xs > size(im,2)) = size(im,2); //ys(ys > size(im,1)) = size(im,1); /*for (int i = 0; i < sz[0]; i++) { xs[i] = max(min(xs[i],im.cols - 1),0); ys[i] = max(min(ys[i],im.cols - 1),0); }*/ cv::Mat out(sz[0],sz[1],CV_32FC1); for (int i = 0; i < sz[0]; i++) { for (int j = 0; j < sz[1]; j++) { out.at<float>(i,j) = float(im.at<uchar>(ys[i],xs[j]))/255 - 0.5; } } //print_mat(out,"out.txt"); out = cos_window.mul(out); //print_mat(out,"out.txt"); return out; } void CSK_Tracker::tracke_one(cv::Point pos_first, int* target_sz, cv::VideoCapture capture, bool &tracking_flag) { //%window size, taking padding into account int sz[2] = { floor(target_sz[0] * (1 + padding)),floor(target_sz[1] * (1 + padding)) }; //%desired output (gaussian shaped), bandwidth proportional to target size double output_sigma = sqrt(target_sz[0] * target_sz[1])*output_sigma_factor; cv::Mat rs(sz[0], sz[1], CV_32FC1); cv::Mat cs(sz[0], sz[1], CV_32FC1); for (int i = 0; i < sz[0]; i++) { for (int j = 0; j < sz[1]; j++) { rs.at<float>(i, j) = i - sz[0] / 2 + 1; cs.at<float>(i, j) = j - sz[1] / 2 + 1; } } //print_mat(rs,"rs.txt"); //print_mat(cs,"cs.txt"); cv::Mat y; exp((-0.5 / pow(output_sigma, 2))*(rs.mul(rs) + cs.mul(cs)), y); //print_mat(y,"y.txt"); //yf = fft2(y) cv::Mat yf; //IplImage *y_temp = &IplImage(y); yf = fft2d(y); vector<cv::Mat> yf_ri(yf.channels()); cv::split(yf, yf_ri); //%store pre-computed cosine window cv::Mat cos_window(sz[0], sz[1], CV_32FC1); hann2d(cos_window); //print_mat(cos_window,"cos_window.txt"); cv::Mat frame; cv::Mat org; cv::Mat x; cv::Mat k; cv::Mat z; cv::Mat alphaf; cv::Mat new_alphaf; cv::Point pos = pos_first; //VideoCapture capture(0); cv::namedWindow("img"); string file_name; int i = 0; while (tracking_flag) { capture.read(org); if (org.empty()) { cout << "fail to open frame" << i << endl; break; } if (org.channels() > 1) { cvtColor(org, frame, CV_BGR2GRAY); } //%extract and pre-process subwindow /*ofstream F("frame.txt"); for(int p = 0;p < frame.rows;p ++){ for(int q = 0;q < frame.cols;q++){ F << int(frame.at<uchar>(p,q)) << " "; } F << ‘\n‘; }*/ //cout<<frame.rows<<" "<<frame.cols<<endl; //imshow("track_frame",frame); //cvWaitKey(10); //cout<< int(frame.at<float>(239,10)) << int(frame.at<float>(239,20))<< endl; //imwrite("frame.jpg",frame); //print_img(frame,"frame.txt"); x = get_subwindow(frame, pos, sz, cos_window); //print_mat(x,"x.txt"); if (i > 0) { k = dense_guess_kernel(sigma, x, z); //print_mat(k,"k.txt"); //kf = fft2(k) //IplImage* k_temp = &IplImage(k); cv::Mat kf = fft2d(k); vector<cv::Mat> kf_ri(kf.channels()); cv::split(kf, kf_ri); //print_mat(kf_ri[0],"kf.txt"); //response = real(ifft2(alphaf .* fft2(k))); %(Eq. 9) vector<cv::Mat> response_ri(2); cv::Mat response = c_mul(alphaf, kf); idft(response, response); response = response / (response.rows*response.cols); cv::split(response, response_ri); //print_mat(response_ri[0],"response.txt"); //%target location is at the maximum response int max_row, max_col; double max_response = 0; for (int j = 0; j < response_ri[0].rows; j++) { for (int k = 0; k < response_ri[0].cols; k++) { if (response_ri[0].at<float>(j, k) > max_response) { max_response = response_ri[0].at<float>(j, k); max_row = j; max_col = k; } } } pos = pos - cv::Point(floor(sz[1] / 2), floor(sz[0] / 2)) + cv::Point(max_col + 1, max_row + 1); } x = get_subwindow(frame, pos, sz, cos_window); //print_mat(x,"x.txt"); k = dense_guess_kernel(sigma, x); //print_mat(k,"k.txt"); //new_alphaf = yf ./ (fft2(k) + lambda); %(Eq. 7) //IplImage *k_t = &IplImage(k); new_alphaf = c_div(yf, (fft2d(k) + lambda)); vector<cv::Mat> new_alphaf_ri(2); cv::split(new_alphaf, new_alphaf_ri); //print_mat(new_alphaf_ri[0],"new_alphaf.txt"); cv::Mat new_z = x; if (i == 0) { alphaf = new_alphaf; z = x; } else { alphaf = (1 - interp_factor) * alphaf + interp_factor*new_alphaf; z = (1 - interp_factor) * z + interp_factor * new_z; } i++; cv::Mat frame_print; org.copyTo(frame_print); rectangle(frame_print, cv::Point(pos.x - target_sz[1] / 2, pos.y - target_sz[0] / 2), cv::Point(pos.x + target_sz[1] / 2, pos.y + target_sz[0] / 2), CV_RGB(255, 255, 255), 1); circle(frame_print, cv::Point(pos.x, pos.y), 2, cvScalar(255, 0, 0)); //rectangle(frame_print, cv::Point(frame_print.cols/2 - 30, frame_print.rows/2 - 30), cv::Point(frame_print.cols / 2 + 30, frame_print.rows / 2 + 30), CV_RGB(0, 255, 0), 1); circle(frame_print, cv::Point(frame_print.cols/2, frame_print.rows/2), 15, cvScalar(255, 0, 255)); imshow("img", frame_print); BOX.x = pos.x; BOX.y = pos.y; BOX.width = target_sz[1]; BOX.height = target_sz[0]; BOX.flag = tracking_flag; memcpy(BOX_DATA, &BOX, sizeof(TrackBox)); imgInfHead img_inf_head; img_inf_head.width = org.cols; img_inf_head.height = org.rows; img_inf_head.type = org.type(); int channels = org.channels(); memcpy(SEND_IMG00_HEAD, &img_inf_head, sizeof(imgInfHead)); memcpy(SEND_IMG00_DATA, org.data, org.cols*org.rows*channels); if (cvWaitKey(10) == ‘s‘) { tracking_flag = false; } } return; } void CSK_Tracker::tracke_one(ifstream &infile, cv::Point pos_first, int frame_count, int* target_sz, cv::VideoCapture capture) { //%window size, taking padding into account int sz[2] = { floor(target_sz[0] * (1 + padding)),floor(target_sz[1] * (1 + padding)) }; //%desired output (gaussian shaped), bandwidth proportional to target size double output_sigma = sqrt(target_sz[0] * target_sz[1])*output_sigma_factor; cv::Mat rs(sz[0], sz[1], CV_32FC1); cv::Mat cs(sz[0], sz[1], CV_32FC1); for (int i = 0; i < sz[0]; i++) { for (int j = 0; j < sz[1]; j++) { rs.at<float>(i, j) = i - sz[0] / 2 + 1; cs.at<float>(i, j) = j - sz[1] / 2 + 1; } } //print_mat(rs,"rs.txt"); //print_mat(cs,"cs.txt"); cv::Mat y; exp((-0.5 / pow(output_sigma, 2))*(rs.mul(rs) + cs.mul(cs)), y); //print_mat(y,"y.txt"); //yf = fft2(y) cv::Mat yf; //IplImage *y_temp = &IplImage(y); yf = fft2d(y); vector<cv::Mat> yf_ri(yf.channels()); cv::split(yf, yf_ri); //%store pre-computed cosine window cv::Mat cos_window(sz[0], sz[1], CV_32FC1); hann2d(cos_window); //print_mat(cos_window,"cos_window.txt"); cv::Mat frame; cv::Mat x; cv::Mat k; cv::Mat z; cv::Mat alphaf; cv::Mat new_alphaf; cv::Point pos = pos_first; cv::namedWindow("haha"); string file_name; for (int i = 0; i < frame_count; ++i) { double totaltime; if (!capture.read(frame)) { cout << "读取视频失败" << endl; return; } /*getline(infile,file_name); frame = imread(file_name);*/ if (frame.empty()) { cout << "fail to open frame" << i << endl; break; } if (frame.channels() > 1) { cvtColor(frame, frame, CV_BGR2GRAY); } //%extract and pre-process subwindow /*ofstream F("frame.txt"); for(int p = 0;p < frame.rows;p ++){ for(int q = 0;q < frame.cols;q++){ F << int(frame.at<uchar>(p,q)) << " "; } F << ‘\n‘; }*/ //cout<<frame.rows<<" "<<frame.cols<<endl; //imshow("track_frame",frame); //cvWaitKey(10); //cout<< int(frame.at<float>(239,10)) << int(frame.at<float>(239,20))<< endl; //imwrite("frame.jpg",frame); //print_img(frame,"frame.txt"); x = get_subwindow(frame, pos, sz, cos_window); //print_mat(x,"x.txt"); if (i > 0) { k = dense_guess_kernel(sigma, x, z); //print_mat(k,"k.txt"); //kf = fft2(k) //IplImage* k_temp = &IplImage(k); cv::Mat kf = fft2d(k); vector<cv::Mat> kf_ri(kf.channels()); cv::split(kf, kf_ri); //print_mat(kf_ri[0],"kf.txt"); //response = real(ifft2(alphaf .* fft2(k))); %(Eq. 9) vector<cv::Mat> response_ri(2); cv::Mat response = c_mul(alphaf, kf); idft(response, response); response = response / (response.rows*response.cols); cv::split(response, response_ri); //print_mat(response_ri[0],"response.txt"); //%target location is at the maximum response int max_row, max_col; double max_response = 0; for (int j = 0; j < response_ri[0].rows; j++) { for (int k = 0; k < response_ri[0].cols; k++) { if (response_ri[0].at<float>(j, k) > max_response) { max_response = response_ri[0].at<float>(j, k); max_row = j; max_col = k; } } } pos = pos - cv::Point(floor(sz[1] / 2), floor(sz[0] / 2)) + cv::Point(max_col + 1, max_row + 1); } x = get_subwindow(frame, pos, sz, cos_window); //print_mat(x,"x.txt"); k = dense_guess_kernel(sigma, x); //print_mat(k,"k.txt"); //new_alphaf = yf ./ (fft2(k) + lambda); %(Eq. 7) //IplImage *k_t = &IplImage(k); new_alphaf = c_div(yf, (fft2d(k) + lambda)); vector<cv::Mat> new_alphaf_ri(2); cv::split(new_alphaf, new_alphaf_ri); //print_mat(new_alphaf_ri[0],"new_alphaf.txt"); cv::Mat new_z = x; if (i == 0) { alphaf = new_alphaf; z = x; } else { alphaf = (1 - interp_factor) * alphaf + interp_factor*new_alphaf; z = (1 - interp_factor) * z + interp_factor * new_z; } //draw // rectangle(frame,Point(pos.x - target_sz/2,pos.y - target_sz/2),Point(pos.x + target_sz/2,pos.y + target_sz/2),CV_RGB(255,255,255),2); // imshow("haha",frame); // uchar key; // key = waitKey(10); // if (key == ‘q‘) // { // break; // } cv::Mat frame_print; frame.copyTo(frame_print); cv::rectangle(frame_print, cv::Point(pos.x - target_sz[1] / 2, pos.y - target_sz[0] / 2), cv::Point(pos.x + target_sz[1] / 2, pos.y + target_sz[0] / 2), CV_RGB(255, 255, 255), 1); cv::circle(frame_print, cv::Point(pos.x, pos.y), 2, cvScalar(255, 0, 0)); /*totaltime = (double)(finish - start) / CLOCKS_PER_SEC;*/ //cout << "\n此程序的运行时间为" << totaltime * 1000 << "ms!" << endl; imshow("haha", frame_print); cvWaitKey(10); } return; } //void CSK_Tracker::run_tracker(string video_name, Point pos, int target_sz) //{ // // VideoCapture capture(video_name); // if (!capture.isOpened()) // { // cout << "Fail to open video " << video_name << endl; // return; // } // int frame_count = int(capture.get(CV_CAP_PROP_FRAME_COUNT)); // double rate = capture.get(CV_CAP_PROP_FPS); // int width = capture.get(CV_CAP_PROP_FRAME_WIDTH); // int height = capture.get(CV_CAP_PROP_FRAME_HEIGHT); // // //%window size, taking padding into account // int sz = floor(target_sz * (1 + padding)); // // //%desired output (gaussian shaped), bandwidth proportional to target size // double output_sigma = target_sz*output_sigma_factor; // Mat rs(sz,sz,CV_32FC1); // Mat cs(sz,sz,CV_32FC1); // for (int i = 0; i < sz; i++) // { // for (int j = 0; j < sz; j++) // { // rs.at<float>(i,j) = i - sz/2 +1; // cs.at<float>(i,j) = j - sz/2 +1; // } // } // // Mat y; // exp((-0.5/pow(output_sigma,2))*(rs.mul(rs) + cs.mul(cs)),y); // // //yf = fft2(y) // Mat yf; // yf = fft2d(y); // vector<Mat> yf_ri(yf.channels()); // cv::split(yf,yf_ri); // // // //%store pre-computed cosine window // Mat cos_window(sz,sz,CV_32FC1); // hann2d(cos_window); // // vector<Point> position(frame_count); // // Mat frame; // Mat x; // Mat k; // Mat z; // Mat alphaf; // Mat new_alphaf; // // namedWindow("haha"); // // for (int i = 0; i < frame_count; i++) // { // if (!capture.read(frame)) // { // cout << "read frame failed!" << endl; // } // if (frame.channels() > 1) // { // cvtColor(frame,frame,CV_BGR2GRAY); // } // // //%extract and pre-process subwindow // // x = get_subwindow(frame, pos, sz, cos_window); // // // if (i > 0) // { // k = dense_guess_kernel(sigma,x,z); // // //kf = fft2(k) // Mat kf = fft2d(k); // vector<Mat> kf_ri(kf.channels()); // cv::split(kf,kf_ri); // // //response = real(ifft2(alphaf .* fft2(k))); %(Eq. 9) // // vector<Mat> response_ri(2); // Mat response = c_mul(alphaf,kf); // idft(response,response); // response = response/(response.rows*response.cols); // cv::split(response,response_ri); // // //%target location is at the maximum response // int max_row, max_col; // double max_response = 0; // for (int j = 0; j < response_ri[0].rows; j++) // { // for (int k = 0; k < response_ri[0].cols; k++) // { // if (response_ri[0].at<float>(j,k) > max_response) // { // max_response = response_ri[0].at<float>(j,k); // max_row = j; // max_col = k; // } // } // } // pos = pos - Point(floor(sz/2),floor(sz/2)) + Point(max_col,max_row); // } // // x = get_subwindow(frame,pos,sz,cos_window); // k = dense_guess_kernel(sigma,x); // //new_alphaf = yf ./ (fft2(k) + lambda); %(Eq. 7) // new_alphaf = c_div(yf,(fft2d(k) + lambda)); // vector<Mat> new_alphaf_ri(2); // cv::split(new_alphaf,new_alphaf_ri); // // Mat new_z = x; // // if (i == 0) // { // alphaf = new_alphaf; // z = x; // } // else // { // alphaf = (1 - interp_factor) * alphaf +interp_factor*new_alphaf; // z = (1 - interp_factor) * z + interp_factor * new_z; // } // // position[i] = pos; // // //draw // rectangle(frame,Point(pos.x - target_sz/2,pos.y - target_sz/2),Point(pos.x + target_sz/2,pos.y + target_sz/2),CV_RGB(255,255,255),2); // imshow("haha",frame); // uchar key; // key = waitKey(10); // if (key == ‘q‘) // { // break; // } // } //} cv::Mat CSK_Tracker::conj(cv::Mat a) { cv::Mat b; a.copyTo(b); vector<cv::Mat> b_ri(2); cv::split(b,b_ri); b_ri[1] = -b_ri[1]; merge(b_ri,b); return b; } cv::Mat CSK_Tracker::c_mul(cv::Mat a, cv::Mat b) { if (!(a.channels() == 2 || b.channels() == 2)) { cout << "c_mul error!" << endl; } vector<cv::Mat> a_ri(2); vector<cv::Mat> b_ri(2); cv::split(a,a_ri); cv::split(b,b_ri); vector<cv::Mat> c_ri(2); c_ri[0] = a_ri[0].mul(b_ri[0]) - a_ri[1].mul(b_ri[1]); c_ri[1] = a_ri[0].mul(b_ri[1]) + a_ri[1].mul(b_ri[0]); cv::Mat c; merge(c_ri,c); return c; } cv::Mat CSK_Tracker::c_div(cv::Mat a, cv::Mat b) { cv::Mat c; c = c_mul(a,conj(b)); vector<cv::Mat> c_ri(2); cv::split(c,c_ri); vector<cv::Mat> mag_b_ri(2); cv::Mat mag_b = c_mul(b,conj(b)); cv::split(mag_b,mag_b_ri); c_ri[0] = c_ri[0]/mag_b_ri[0]; c_ri[1] = c_ri[1]/mag_b_ri[0]; merge(c_ri,c); return c; } cv::Mat CSK_Tracker::fft2d(cv::Mat a) { cv::Mat padded_a; //int m_a = getOptimalDFTSize(a.rows); //int n_a = getOptimalDFTSize(a.cols); int m_a = a.rows; int n_a = a.cols; copyMakeBorder(a, padded_a, 0, m_a - a.rows, 0, n_a - a.cols, cv::BORDER_CONSTANT, cv::Scalar::all(0)); cv::Mat planes_a[] = { cv::Mat_<float>(padded_a), cv::Mat::zeros(padded_a.size(),CV_32F)}; cv::Mat af; merge(planes_a, 2, af); dft(af,af); return af; } //Mat CSK_Tracker::fft2d(IplImage *src) //{ //实部、虚部 // IplImage *image_Re = 0, *image_Im = 0, *Fourier = 0; // IplImage *D; // // int i, j; // image_Re = cvCreateImage(cvGetSize(src), IPL_DEPTH_64F, 1); //实部 // //Imaginary part // image_Im = cvCreateImage(cvGetSize(src), IPL_DEPTH_64F, 1); //虚部 // //2 channels (image_Re, image_Im) // Fourier = cvCreateImage(cvGetSize(src), IPL_DEPTH_64F, 2); // // Real part conversion from u8 to 64f (double) // cvConvertScale(src, image_Re); // // Imaginary part (zeros) // cvZero(image_Im); // // Join real and imaginary parts and stock them in Fourier image // cvMerge(image_Re, image_Im, 0, 0, Fourier); // // // Application of the forward Fourier transform // cvDFT(Fourier, D, CV_DXT_FORWARD); // cvReleaseImage(&image_Re); // cvReleaseImage(&image_Im); // cvReleaseImage(&Fourier); // Mat dst = Mat(D); // return dst; //} void CSK_Tracker::print_mat(cv::Mat a, string file_name) { ofstream fout(file_name); int col = a.cols; int row = a.rows; for(int i = 0; i< row; i++){ for(int j = 0; j < col; j++){ fout << a.at<float>(i,j) << " "; } fout << ‘\n‘; } fout.close(); } void CSK_Tracker::print_img(cv::Mat a, string file_name) { ofstream fout(file_name); int col = a.cols; int row = a.rows; for(int i = 0; i< row; i++){ for(int j = 0; j < col; j++){ fout << float(a.at<uchar>(i,j)) << " "; } fout << endl; } fout.close(); }