题面
Sol
先求出最长上升序列,倒着求,然后贪心的往后选,选满足的
求最长上升序列我用的是树状数组
# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e4 + 5);
IL ll Read(){
RG char c = getchar(); RG ll x = 0, z = 1;
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
int n, a[_], m, o[_], len, maxlen;
struct Data{
int v, p;
IL bool operator <(RG Data B) const{
return v != B.v ? v < B.v : p > B.p;
}
} bit[_], f[_];
IL void Add(RG int x, RG Data mx){
for(; x <= len; x += x & -x) bit[x] = max(bit[x], mx);
}
IL Data Query(RG int x){
RG Data ret = (Data){-1, 0};
for(; x; x -= x & -x) ret = max(bit[x], ret);
return ret;
}
int main(RG int argc, RG char* argv[]){
n = Read();
for(RG int i = 1; i <= n; ++i) o[++len] = a[i] = -Read();
sort(o + 1, o + len + 1);
len = unique(o + 1, o + len + 1) - o - 1;
for(RG int i = 1; i <= n; ++i) a[i] = lower_bound(o + 1, o + len + 1, a[i]) - o;
f[n] = (Data){1, 0}; Add(a[n], (Data){1, n});
for(RG int i = n - 1; i; --i){
f[i] = (Data){1, 0};
RG Data mx = Query(a[i] - 1);
f[i] = max(f[i], (Data){mx.v + 1, mx.p});
Add(a[i], (Data){f[i].v, i});
maxlen = max(maxlen, f[i].v);
}
m = Read();
for(RG int i = 1; i <= m; ++i){
RG int l = Read(), mx = -1e9;
if(l > maxlen) puts("Impossible");
else{
for(RG int i = 1; i <= n && l; ++i)
if(f[i].v >= l && -o[a[i]] > mx){
--l;
printf("%d", mx = -o[a[i]]);
if(l != 0) putchar(' ');
}
puts("");
}
}
return 0;
}