常用的勾股数:\(3n,4n,5n(n\in N^*)\);\(5,12,13\);\(7,24,25\);\(8,15,17\);\(9,40,41\);
连比形式或比例形式,可以引入非零比例因子简化运算:
如三角形的三边之比为\(a:b:c=2:3:4\),则可以设\(a=2k,b=3k,c=4k(k>0)\);
同样的思路也可以用到圆锥曲线中,比如已知离心率\(e=\cfrac{c}{a}=\sqrt{3}\),则可知\(c=\sqrt{3}t,a=t(t>0)\) ,则有\(b=\sqrt{2}t\);
如\(\Delta ABC\)中,给定\(\cfrac{a}{cosA}=\cfrac{b}{cosB}=\cfrac{c}{cosC}\),若令\(\cfrac{a}{cosA}=\cfrac{b}{cosB}=\cfrac{c}{cosC}=k\),
则有\(cosA=\cfrac{a}{k}\),\(cosB=\cfrac{b}{k}\),\(cosC=\cfrac{c}{k}\),
再结合\(sinA=\cfrac{a}{2R}\),\(sinB=\cfrac{b}{2R}\),\(sinC=\cfrac{c}{2R}\),
故有\(tanA=tanB=tanC=\cfrac{k}{2R}\),故\(A=B=C=\cfrac{\pi}{3}\)。
- 设等比数列\(\{a_n\}\)的前\(n\)项的和为\(S_n\),若\(\cfrac{S_6}{S_3}=\cfrac{1}{2}\),则\(\cfrac{S_9}{S_6}\)=?
分析:引入比例因子,设\(\cfrac{S_6}{S_3}=\cfrac{1}{2}=\cfrac{k}{2k}(k\neq 0)\),则\(S_6=k\),\(S_3=2k\),
\(S_6-S_3=-k\),由\(S_3,S_6-S_3,S_9-S_6\)成等比数列,可知\(S_9-S_6=\cfrac{k}{2}\)
则\(S_9=\cfrac{3k}{2}\),故\(\cfrac{S_9}{S_6}=\cfrac{\cfrac{3k}{2}}{2k}=\cfrac{3}{4}\)。
已知\(a:b:c=2:3:4\),引入非零因子\(k\),则可以这样表达,\(a=2k,b=3k,c=4k\),可以看成\(a,b,c\)都是\(k\)的一元函数了。
(2017全国卷1理科第11题)已知\(2^x=3^y=5^z\),比较\(2x、3y、5z\)的大小;
分析:令\(2^x=3^y=5^z=k\),则\(x=log_2k=\cfrac{lgk}{lg2}\),\(y=log_3k=\cfrac{lgk}{lg3}\),\(z=log_5k=\cfrac{lgk}{lg5}\),
故\(2x=\cfrac{2lgk}{lg2}=\cfrac{lgk}{\cfrac{1}{2}lg2}=\cfrac{lgk}{lg\sqrt{2}}\),\(3y=\cfrac{3lgk}{lg3}=\cfrac{lgk}{\cfrac{1}{3}lg3}=\cfrac{lgk}{lg\sqrt[3]{3}}\),\(5z=\cfrac{5lgk}{lg5}=\cfrac{lgk}{\cfrac{1}{5}lg5}=\cfrac{lgk}{lg\sqrt[5]{5}}\),
接下来,法1:转化为只需要比较\(\sqrt[2]{2}\),\(\sqrt[3]{3}\),\(\sqrt[5]{5}\)三者的大小即可。
先比较\(\sqrt[2]{2}\),\(\sqrt[3]{3}\),给两个式子同时6次方,得到\((\sqrt[2]{2})^6=2^3=8\),\((\sqrt[3]{3})^6=3^2=9\),故\(\sqrt[2]{2}<\sqrt[3]{3}\),则\(\cfrac{lgk}{lg\sqrt[2]{2}}>\cfrac{lgk}{lg\sqrt[3]{3}}\),即得到\(2x>3y\)
再比较\(\sqrt[2]{2}\),\(\sqrt[5]{5}\),给两个式子同时10次方,得到\((\sqrt[2]{2})^{10}=2^5=32\),\((\sqrt[5]{5})^{10}=5^2=25\),故\(\sqrt[2]{2}>\sqrt[5]{5}\),则\(\cfrac{lgk}{lg\sqrt[2]{2}}<\cfrac{lgk}{lg\sqrt[3]{3}}\),即得到\(5z>2x\),综上得到\(3y<2x<5z\)
法2:作商法,\(\cfrac{2x}{3y}=\cfrac{2}{3}\cdot \cfrac{lg3}{lg2}=\cfrac{lg9}{lg8}=log_89>1\),故\(2x>3y\);
\(\cfrac{5z}{2x}=\cfrac{5}{2}\cdot \cfrac{lg2}{lg5}=\cfrac{lg2^5}{lg5^2}=log_{25}32>1\),故\(5z>2x\);故\(3y<2x<5z\)。