登月图片消噪
scipy.fftpack模块用来计算快速傅里叶变换
速度比传统傅里叶变换更快,是对之前算法的改进
图片是二维数据,注意使用fftpack的二维转变方法
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
import matplotlib.pyplot as plt
%matplotlib inline
# scipy的快速傅里叶变换函数
from scipy.fftpack import fft2,ifft2
data = plt.imread(‘moonlanding.png‘)
fft_data = fft2(data)
# 滤波 过滤高频波
fft_data[np.where(np.abs(fft_data)>8e2)] = 0
# 转换回时域
ifft_data = ifft2(fft_data)
# ifft_data
# 获取实数部分
result = np.real(ifft_data)
plt.figure(figsize=(8,8))
plt.imshow(result,cmap=‘gray‘)
ifft_data.shape
数值积分,求解圆周率
求解圆周率
integrate 对函数(1 - x^2)^0.5进行积分
使用scipy.integrate进行积分,调用quad()方法
import scipy.integrate as integrate
def func_xy(x):
# y = (1-x**2)**0.5
return (1-x**2)**0.5
# 参数1: 是一个函数(指针),描述的是x和y之间的关系
# 参数2,3:是不规则图形在x轴上的起点和终点
# quad函数求面积
area,err = integrate.quad(func_xy,-1,1)
?
pi = area*2
pi
Scipy文件输入/输出
随机生成数组,使用scipy中的io.savemat()保存
文件格式是.mat,标准的二进制文件
# i input
# o output
import scipy.io as io
data = np.random.random(size=(100,2))
data
io.savemat(‘mydata‘,{‘data‘:data})
使用io.loadmat()读取数据
ndata = io.loadmat(‘mydata.mat‘)[‘data‘]
读写图片使用scipy中misc.imread()/imsave()
import scipy.misc as misc
plt.imshow(misc.face())
image = misc.face()
misc.imsave(‘mm.png‘,image)
plt.imshow(misc.imread(‘mm.png‘))
# `imsave` is deprecated in SciPy 1.0.0, and will be removed in 1.2.0.
from imageio import imwrite,imread
imwrite(‘mmm.png‘,image)
其他处理方式misc.imrotate\imresize\imfilter
# 处理图片旋转
rotate_image = misc.imrotate(image,angle=90)
rotate_image
# 调整图片大小
# 使用整数 百分比(0-100之间的数)
m1 = misc.imresize(image,size=50)
plt.imshow(m1)
# 0-1之间的小数,修改的是像素
m2 = misc.imresize(image,size=0.01)
plt.imshow(m2)
# 使用元组调整图像大小(填充、压缩的效果)
m3 = misc.imresize(image,size=(100,200))
plt.imshow(m3)
# 使用imfilter滤镜,处理图片效果
# ‘blur‘, ‘contour‘, ‘detail‘, ‘edge_enhance‘, ‘edge_enhance_more‘,‘emboss‘, ‘find_edges‘, ‘smooth‘, ‘smooth_more‘, ‘sharpen‘
m4 = misc.imfilter(image,ftype=‘edge_enhance‘)
plt.imshow(m4)
使用scipy.ndimage图片处理
使用scipy.misc.face(gray=True)获取图片,使用ndimage移动坐标、旋转图片、切割图片、缩放图片
import scipy.ndimage as ndimage
导包,读取图片显示图片
gray_image = misc.face(gray=True)
plt.imshow(gray_image,cmap=‘gray‘)
shift移动坐标
# shift-->float类型,表示像素,不是比例
plt.imshow(ndimage.shift(gray_image,shift=200),cmap=‘gray‘)
plt.imshow(ndimage.shift(gray_image,shift=(100,200)),cmap=‘gray‘)
shift函数中mode参数的可选值:‘constant‘, ‘nearest‘, ‘reflect‘, ‘mirror‘ or ‘wrap‘
plt.imshow(ndimage.shift(gray_image,shift=(100,100),mode=‘constant‘),cmap=‘gray‘)
rotate旋转图片
plt.imshow(ndimage.rotate(gray_image,angle=70),cmap=‘gray‘)
zoom缩放图片
# zoom使用float,是一个比例值
plt.imshow(ndimage.zoom(gray_image,zoom=0.5))
# zoom使用元组,也只接受小数,表示height、width的缩放比例
plt.imshow(ndimage.zoom(gray_image,zoom=(0.3,0.5)))
使用切片切割图片
图片进行过滤
添加噪声,对噪声图片使用ndimage中的高斯滤波、中值滤波、signal中维纳滤波进行处理
使图片变清楚
moon = plt.imread(‘moonlanding.png‘)
plt.imshow(moon,cmap=‘gray‘)
加载图片,使用灰色图片misc.face()添加噪声
face = misc.face(gray=True)
plt.imshow(face)
face1 = face[0:512,-512:]
plt.imshow(face1)
noise = face1.std() * np.random.random(face1.shape)
plt.imshow((face1 + noise),cmap=‘gray‘)
noise_face = face1 + noise
plt.imshow(ndimage.gaussian_filter(noise_face,sigma=1.5),cmap=‘gray‘)
plt.imshow(ndimage.median_filter(noise_face,size=3),cmap=‘gray‘)
gaussian高斯滤波参数sigma:高斯核的标准偏差
高斯分布就是正太分布
moon1 = ndimage.gaussian_filter(moon,sigma=3)
plt.imshow(moon1,cmap=‘gray‘)
median中值滤波参数size:给出在每个元素上从输入数组中取出的形状位置,定义过滤器功能的输入
moon2 = ndimage.median_filter(moon,size=15)
plt.imshow(moon2,cmap=‘gray‘)
signal维纳滤波参数mysize:滤镜尺寸的标量
import scipy.signal as signal
# 类似傅里叶变换的一种算法
moon3 = signal.wiener(moon,mysize=5)
plt.imshow(moon3)