码迷,mamicode.com
首页 > 其他好文 > 详细

高可用——数据

时间:2018-01-30 12:11:47      阅读:136      评论:0      收藏:0      [点我收藏+]

标签:意义   历史   com   bubuko   监控   增加   持久性   src   另一个   

核心知识点:

1.CAP原理

  a.数据的可用:保证数据不丢失

  b.数据的一致性:是否能提供一致性的数据

  c.分区耐久性:随着数据量的增加,满足跨网络请求

 

对许多网站而言,数据是最宝贵的物质资产,硬件可以购买,软件可以重写,

但是多年运营沉淀下来的各种数据(用户数据、交易数据、商品数据.......),

代表着历史,已经成为过往,不能再重来,一旦失去,对网站的打击可以说是毁灭性的,

因此可以说,保护网站的数据就是保护网站的命脉。

 

不同于高可用的应用和服务,由于数据存储服务器上保存的数据不同,

当某台服务器宕机的时候,数据访问不能任意切换到集群中其他的机器上。

保证数据存储高可用的手段主要是数据备份和失效转移机制

数据备份是保证数据有多个副本,任意副本的失效都不会导致数据的永久丢失,从而实现数据完全的持久化。

而失效转移机制则保证当一个数据副本不可访问时,可以快速切换访问数据的其它副本,保证系统可用。

 

关于缓存服务的高可用,在实践中争议很大,

一种观点认为缓存已经成为网站数据服务的重要组成部分,事实上承担了业务中绝大多数的数据读取访问服务,

缓存失效可能会导致数据库负载过高而宕机,进而影响整个网站的可用性,因此缓存服务器需要实现和数据存储服务同样的高可用。

另一种观点认为,缓存服务不是数据存储服务,缓存服务器宕机引起缓存数据丢失导致服务器负载过高而宕机,

应该通过其它手段解决,而不是提高缓存服务本身的高可用。

 

在我看来,对于缓存服务器集群中的单机宕机,如果缓存服务器集群规模较大,

那么单机宕机引起的缓存数据丢失比例和数据库负载压力变化都较小,对整个系统影响也较小。

扩大缓存服务器集群规模的一个简单手段就是整个网站共享一个分布式缓存集群,

单独的应用和产品不需要部署自己的缓存服务器,只需要向共享缓存集群申请缓存资源即可。

并且通过逻辑或物理分区的方式将每个应用的缓存部署在多台服务器上,

任何一台服务器宕机引起的的缓存失效都只影响应用缓存数据的一小部分,不会对应用性能和数据库负载造成太大的影响。

 

1.CAP原理

(1)数据的持久性

保存数据可持久存储,在各种情况下都不会出现数据丢失的问题。

为实现数据的持久性,不但在写入数据时需要写入持久性存储,还需要将数据备份一个或多个副本,

存放在不同的物理存储设备上,在某个存储故障或灾害发生时,数据不会丢失。

 

(2)数据可访问性

在多份数据副本分别存放在不同的存储设备的情况下,如果一个数据存储设备损坏,

就需要将数据访问切换到另一个数据存储设备上,如果这个过程不能很快完成(终端用户几乎没有感知),

或者在完成过程中需要停止终端用户访问数据,那么这段时间数据时不可访问的。

 

(3)数据一致性

在数据有多份副本的情况下,如果网络、服务器或者软件出现故障,会导致部分副本写入成功,部分副本写入失败。

这就会造成各个副本之间的数据不一致,数据内容冲突。

实践中,导致数据不一致的情形有很多种,表现形式也多种多样,比如数据更新返回操作失败,事实上数据在存储服务器已经更新成功。

 

CAP原理认为,一个提供数据服务的存储系统无法同时满足数据一致性(Consistency)、数据可用性(Availability)、

分区耐受性(Partition Tolerance系统具有跨网络分区的伸缩性)这三个条件,如图所示:

技术分享图片

在大型网站应用中,数据规模总是快速扩张,因此可伸缩性即分区耐受性必不可少,规模变大以后,

机器数量也会变得庞大,这时网络和服务器故障会频繁出现,要想保证应用可用,就必须保证分布式处理系统的高可用性。

所以在大型网站中,通常会选择强化分布式存储系统的可用性(A)和伸缩性(P),而在某种程度上放弃一致性(C)。

一般说来,数据不一致通常出现在系统高并发写操作或集群状态不稳(故障恢复、集群扩容......)的情况下,

应用系统需要对分布式数据处理系统的数据不一致性有所了解并进行某种意义上的补偿和纠错,以避免出现应用系统数据不正确。

 

CAP原理对于可伸缩的分布式系统设计具有重要意义,在系统设计开发过程中,

不恰当的迎合各种需求,企图打造一个完美的产品,可能会使设计进入两难境地,难以为继。

具体说来,数据一致性又可分为如下几点:

数据强一致

各个副本的数据在物理存储中总是一致的;数据更新操作结果和操作响应总是一致的,

即操作响应通知更新失败,那么数据一定没有被更改,而不是处于不确定状态。

 

数据用户一致

即数据在物理存储中的各个副本的数据可能不一致,但是终端用户访问时,

通过纠错和校验机制,可以确定一个一致的且正确的数据返回给用户。

 

数据最终一致

这是数据一致性中较弱的一种,即物理存储的数据可能是不一致的,终端用户访问到的数据可能也是不一致

(同一用户连续访问结果不同;或者不同用户同时访问结果不同),但是系统经过一段时间(通常是一个比较短的时间段)

的自我恢复和修正,数据最终会达到一致。

因为难以满足数据的强一致性,网站通常会综合成本、技术、业务场景等条件,结合应用服务和其它数据监控与纠错功能,

是存储系统达到用户一致,保证最终用户访问数据的正确性。

 

2.数据备份

 

3.失效转移

 

高可用——数据

标签:意义   历史   com   bubuko   监控   增加   持久性   src   另一个   

原文地址:https://www.cnblogs.com/yangmingxianshen/p/8381385.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!