码迷,mamicode.com
首页 > 其他好文 > 详细

[CF919E]Congruence Equation

时间:2018-02-01 20:37:01      阅读:187      评论:0      收藏:0      [点我收藏+]

标签:幸好   main   rac   直接   efi   res   16px   rest   pos   

题意:求关于$n$的方程$n\cdot a^n\equiv b\left(mod\ p\right)$在$[1,x]$中整数解的数量

果然是Chinese round,interesting round(幸好没打

首先注意到那个指数很令人痛苦,所以用费马小定理把指数弄掉

令$n=\left(p-1\right)i+j\left(i\geq0,0\leq j\lt p-1\right)$

$\left[\left(p-1\right)i+j\right]a^{\left(p-1\right)i+j}\equiv b$

$\left(p-1\right)i+j\equiv\dfrac{b}{a^j}$

$i\equiv j-\dfrac{b}{a^j}$

所以对于每个给定的$j$,$i$的取值是$j-\dfrac{b}{a^j}+tp$的形式

所以我们可以枚举$0\leq j\lt p-1$,直接按$i\geq0,1\leq n\leq x$统计一下就好

注意减去$i=0$且$j=0$,也就是$n=0$的情况

#include<stdio.h>
#define ll long long
ll a,b,p,x,y,j,r,l,res;
int main(){
	scanf("%I64d%I64d%I64d%I64d",&a,&b,&p,&x);
	r=1;
	for(j=0;j<p-2;j++)r=r*a%p;
	y=b;
	for(j=0;j<p-1;j++){
		l=j-y;
		if(l<0)l+=p;
		if(x>=j&&l<=(x-j)/(p-1)){
			res+=((x-j)/(p-1)-l)/p+1;
			if(l==0&&j==0)res--;
		}
		y=y*r%p;
	}
	printf("%I64d\n",res);
}

[CF919E]Congruence Equation

标签:幸好   main   rac   直接   efi   res   16px   rest   pos   

原文地址:https://www.cnblogs.com/jefflyy/p/8400614.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!