例题
同样是“吊打XXX”
同JSOI平衡点
爬山法
其实很简单,就是每次往最优的方向移动一段距离,随着距离的接近而放小移动幅度,最后逼近最优解
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<‘ ‘; puts("");
using namespace std;
const int maxn = 10005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == ‘-‘) flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - ‘0‘; c = getchar();}
return out * flag;
}
int n,w[maxn];
double x[maxn],y[maxn];
double ansx,ansy;
double dis(double X,double Y,int i){
return sqrt((X - x[i]) * (X - x[i]) + (Y - y[i]) * (Y - y[i]));
}
void climbhill(){
double T = 10000,dx,dy;
while (T > 0.00000001){
dx = dy = 0;
for (int i = 1; i <= n; i++){
dx += (x[i] - ansx) * w[i] / dis(ansx,ansy,i);
dy += (y[i] - ansy) * w[i] / dis(ansx,ansy,i);
}
ansx += dx * T;
ansy += dy * T;
if (T > 0.5) T *= 0.5;
else T *= 0.97;
}
}
int main(){
n = read();
for (int i = 1; i <= n; i++){
x[i] = read(),y[i] = read(),w[i] = read();
ansx += x[i] * w[i]; ansy += y[i] * w[i];
}
ansx /= n; ansy /= n;
climbhill();
printf("%.3lf %.3lf\n",ansx,ansy);
return 0;
}