码迷,mamicode.com
首页 > 其他好文 > 详细

【学术篇】SDOI2008 沙拉公主的困惑

时间:2018-02-04 11:17:12      阅读:143      评论:0      收藏:0      [点我收藏+]

标签:直接   else   +=   getc   class   注意   空格   ons   gcd   

传送门!

题目在里...

题目大意?

难道不是说的很清楚了么OvO
求n!中与m!互质的数的个数..

题目分析.

显然的数论... 所以就是化式子呗..
一个很显然的性质就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\)...
而题目中说了\(m\leqslant n\), ∴ \(m!|n!\)
于是我们只需要计算\(m!\)中与\(m!\)互质的数的个数,然后乘以\(\frac{n!}{m!}\)即可..
我们发现上面加粗的这一坨就是\(\varphi(m!)\)嘛...
所以\(ans=\varphi(m!)*\frac{n!}{m!}\)
又有\(\varphi(x)=x*\prod_{i}^{n}(1-\frac{1}{p_i})\) 其中\(p_i\)表示x的质因数...
\(m!=1*2*...*m\), 所以\(m!\)的质因数很显然就是不大于\(m\)的质数...
然后带入上式约掉\(m!\)就有了\(ans=n!*\prod_{i}^{n}\frac{p_i-1}{p_i}\) (其中\(p_i\leqslant m\)\(p_i\)为质数)...
由于多组询问, 而且内存开了256MB不是 所以我们要预处理... 不然会T...
由于上式, 我们要预处理的东西有:

  • 筛素数(简单欧拉筛)
  • 阶乘(顺着乘一遍取模就行了)
  • 逆元(要递推求出所有数的哦) (所以最好用\(O(n)\)的, 不会的话直接看代码就行了 百度一下一堆详细讲解OvO)
  • \(mul_i=\prod_{i}^{n}\frac{p_i-1}{p_i}\)这一坨东西...(不大于\(m\)的质数\(p_i\)们的\((1-\frac{1}{p_i})\)的乘积...)
    然后处理这一坨的时候也很容易...递推即可.. 显然, 我们有
  1. \(i\)是质数时, \(mul_i=mul_{i-1}*\frac{i-1}{i}\)
  2. 否则\(mul_i=mul_{i-1}\)即可...
    这样就做完了.

实现代码:

#include <cstdio>
typedef long long LL;
const int X=1e7+3;
inline int gn(int a=0,char c=0){
    for(;c<48||c>57;c=getchar());
    for(;c>47&&c<58;c=getchar())
        a=a*10+c-48; return a;
}
int inv[X],fac[X],eu[X],mul[X],pri[X/10],tot;
bool notp[X]; int T,R,M,N;
void prime(){
    notp[1]=1;
    for(int i=2;i<X;++i){
        if(!notp[i])pri[++tot]=i;
        for(int j=1;j<=tot&&i*pri[j]<=1e7;++j){
            notp[i*pri[j]]=1; if(i%pri[j]==0) break;
        }
    }
}
void calcinv(){
    inv[1]=1;
    for(int i=2;i<X;++i){
        inv[i]=(LL)(R-R/i)*inv[R%i]%R;
        if(inv[i]<0) inv[i]+=R;
    }
}
void calcfac(){
    fac[1]=1;
    for(int i=2;i<X;++i)
        fac[i]=(LL)fac[i-1]*i%R;
}
void calcmul(){
    mul[1]=1;
    for(int i=2;i<X;++i)
        if(!notp[i]) mul[i]=(LL)mul[i-1]*(i-1)%R*inv[i]%R;
        else mul[i]=mul[i-1];
}
int main(){
    T=gn(),R=gn();
    prime(); calcinv(); calcfac(); calcmul();
    while(T--){
        N=gn(),M=gn();
        printf("%d\n",(int)((LL)fac[N]*mul[M]%R));
    }
}

注意事项~

  1. 做乘法的时候要转long long,(当然你要是全用long long算当我没说
  2. 预处理的时候1的值作为边界值给出, 循环要从2开始
  3. 每一步都记得取模
  4. 输出的时候记得换行而不是空格(我是不是暴露了什么←_←

完结撒花

【学术篇】SDOI2008 沙拉公主的困惑

标签:直接   else   +=   getc   class   注意   空格   ons   gcd   

原文地址:https://www.cnblogs.com/enzymii/p/8412195.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!