码迷,mamicode.com
首页 > 其他好文 > 详细

吴恩达“机器学习”——学习笔记八

时间:2018-02-04 19:29:32      阅读:192      评论:0      收藏:0      [点我收藏+]

标签:集合   选择   等于   img   复杂度   目标   最小   一个   size   

偏差方差权衡(bias variance trade off)

偏差:如果说一个模型欠拟合,也可以说它的偏差很大。

方差:如果说一个模型过拟合,也可以说它的方差很大。

训练误差

技术分享图片

经验风险最小化(ERM)

选择参数,使得训练误差最小化,即

技术分享图片

假设类H:所有假设构成的集合。

ERM的目标也可以写成选择假设,使得训练误差最小化,即

技术分享图片

泛化误差(generalization error)

技术分享图片,即对于新样本错误分类的概率。

联合界引理(the union bound)

事件和的概率小于等于事件概率之和。

Hoeffding不等式引理

令z1,...,zm为i,i,d,并且服从伯努利分布,即P(zi=1)=phi,P(zi=0)=1-phi。定义技术分享图片,对于给定的gamma,Hoeffding不等式为,

技术分享图片

ERM的性质

以有限假设类为例

令H为一个包含了k个假设的假设类。这k个函数都是从输入映射到输出的函数,不带有参数。ERM需要做的就是,对于给定的训练集合,从假设类中找到一个假设,使得训练误差最小。我们更喜欢的是泛化误差较小。所以,先证明训练误差是泛化误差的近似,然后可以证明ERM输出的泛化误差具有上界。以下为证明过程

对于假设类里面的某一个特定假设hi,定义技术分享图片,那么训练误差即为

技术分享图片,则训练误差为泛化误差的平均数,则有技术分享图片所以对于某一个假设来说,训练误差和泛化误差是近似的。令Ai=技术分享图片,则技术分享图片技术分享图片

技术分享图片。所以,对于所有的假设,训练误差和泛化误差是近似的,即一致收敛。

 对于给定的gamma与delta,令技术分享图片,则可以确定样本的数量m,技术分享图片,这也叫样本复杂度。

对于给定的m与delta,可以求解出gamma。在1-delta的概率下,有技术分享图片,所以不等式右边的即为gamma。

定义技术分享图片,同时技术分享图片。则,

技术分享图片

定理:令假设类是一个k个假设的集合,令m和delta固定,在至少1-gamma的概率下,有技术分享图片第一项对应着算法的偏差,第二项对应着假设的方差。通过使用一个更为复杂的假设类,会使得方差变大,偏差变小。

 

吴恩达“机器学习”——学习笔记八

标签:集合   选择   等于   img   复杂度   目标   最小   一个   size   

原文地址:https://www.cnblogs.com/xxp17457741/p/8413668.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!