Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0
? Find all unique triplets in the array which gives the sum of zero.
Notice
Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
The solution set must not contain duplicate triplets.
Example
For example, given array S = {-1 0 1 2 -1 -4}
, A solution set is:
(-1, 0, 1)
(-1, -1, 2)
题意
给出一个有n个整数的数组S,在S中找到三个整数a, b, c,找到所有使得a + b + c = 0的三元组。
在三元组(a, b, c),要求a <= b <= c。结果不能包含重复的三元组。
解法一:
1 class Solution { 2 public: 3 /** 4 * @param numbers : Give an array numbers of n integer 5 * @return : Find all unique triplets in the array which gives the sum of zero. 6 */ 7 vector<vector<int> > threeSum(vector<int> &nums) { 8 vector<vector<int> > result; 9 10 sort(nums.begin(), nums.end()); 11 for (int i = 0; i < nums.size(); i++) { 12 if (i > 0 && nums[i] == nums[i - 1]) { 13 continue; 14 } 15 16 // two sum; 17 int start = i + 1, end = nums.size() - 1; 18 int target = -nums[i]; 19 while (start < end) { 20 if (start > i + 1 && nums[start - 1] == nums[start]) { 21 start++; 22 continue; 23 } 24 25 if (nums[start] + nums[end] < target) { 26 start++; 27 } else if (nums[start] + nums[end] > target) { 28 end--; 29 } else { 30 vector<int> triple; 31 triple.push_back(nums[i]); 32 triple.push_back(nums[start]); 33 triple.push_back(nums[end]); 34 result.push_back(triple); 35 start++; 36 end--; 37 } 38 } 39 } 40 41 return result; 42 } 43 };
解法二:
1 class Solution { 2 public: 3 /* 4 * @param numbers: Give an array numbers of n integer 5 * @return: Find all unique triplets in the array which gives the sum of zero. 6 */ 7 vector<vector<int>> threeSum(vector<int> &numbers) { 8 vector<vector<int>> ret; 9 10 int n = numbers.size(); 11 sort(numbers.begin(), numbers.end()); 12 13 for (int i = 0; i < n - 2; ++i) { 14 if (i != 0 && numbers[i] == numbers[i-1]) { 15 continue; 16 } 17 18 int sum = -numbers[i]; 19 int j = i + 1, k = n - 1; 20 21 while (j < k) { 22 int tmp = numbers[j] + numbers[k]; 23 if (tmp == sum) { 24 vector<int> sol{numbers[i], numbers[j], numbers[k]}; 25 ret.push_back(sol); 26 while (j < k && numbers[j] == numbers[j+1]) { 27 j++; 28 } 29 while (j < k && numbers[k] == numbers[k-1]) { 30 k--; 31 } 32 j++; 33 k--; 34 } else if (tmp > sum) { 35 k--; 36 } else { 37 j++; 38 } 39 } 40 } 41 return ret; 42 } 43 };