|
method=CV_TM_SQDIFF
method=CV_TM_SQDIFF_NORMED
method=CV_TM_CCORR
method=CV_TM_CCORR_NORMED
method=CV_TM_CCOEFF
where
method=CV_TM_CCOEFF_NORMED
the function calls as arguments:
#include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include <iostream> #include <stdio.h> using namespace std; using namespace cv; Mat img; Mat templ; Mat result; const char* image_window = "Source Image"; const char* result_window = "Result window"; int match_method; int max_Trackbar = 5; void MatchingMethod( int, void* ); int main( int, char** argv ) { /// Load image and template img = imread( argv[1], 1 ); templ = imread( argv[2], 1 ); /// Create windows namedWindow( image_window, CV_WINDOW_AUTOSIZE ); namedWindow( result_window, CV_WINDOW_AUTOSIZE ); /// Create Trackbar const char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED"; createTrackbar( trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod ); MatchingMethod( 0, 0 ); waitKey(0); return 0; } void MatchingMethod( int, void* ) { Mat img_display; img.copyTo( img_display ); //重要,调用模版匹配再进行归一化 matchTemplate( img, templ, result, match_method ); normalize( result, result, 0, 1, NORM_MINMAX); double minVal; double maxVal; Point minLoc; Point maxLoc; Point matchLoc; //找到最大最小点 minMaxLoc( result, &minVal, &maxVal, &minLoc, &maxLoc, Mat() ); //根据我前面讲的,分方法取最大还是最小值 if( match_method == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED ) { matchLoc = minLoc; } else { matchLoc = maxLoc; } //画上矩形框框 rectangle( img_display, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 ); rectangle( result, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 ); imshow( image_window, img_display ); imshow( result_window, result ); return; }
OpenCV2马拉松第13圈——模版匹配,布布扣,bubuko.com
原文地址:http://blog.csdn.net/abcd1992719g/article/details/25539703