标签:deep learning caffe 机器学习 源码修改
caffe源码修改:抽取任意一张图片的特征
目前caffe不是很完善,输入的图片数据需要在prototxt指定路径。但是我们往往有这么一个需求:训练后得到一个模型文件,我们想拿这个模型文件来对一张图片抽取特征或者预测分类等。如果非得在prototxt指定路径,就很不方便。因此,这样的工具才是我们需要的:给一个可执行文件通过命令行来传递图片路径,然后caffe读入图片数据,进行一次正向传播。
因此我做了这么一个工具,用来抽取任意一张图片的特征。
这工具的使用方法如下:
extract_one_feature.bin ./model/caffe_reference_imagenet_model ./examples/_temp/imagenet_val.prototxt fc7 ./examples/_temp/features /media/G/imageset/clothing/针织衫/针织衫_426.jpg CPU
参数1:./model/caffe_reference_imagenet_model是训练后的模型文件
参数2:./examples/_temp/imagenet_val.prototxt 网络配置文件
参数3:fc7是blob的名字
参数4:./examples/_temp/features 将该图片的特征保存在该文件
参数5:图片路径
参数6:GPU或者CPU模式
(其实我还想到更好的工具,如果该可执行文件是监听模式的,就是通过一定的方式,给该进程传递 图片路径,进程接到任务就执行。
这样子的话,就不需要每次抽一张图片都要申请内存空间。(*^__^*) 嘻嘻……)
下面给出初步修改方法,大家可以根据自己需求再修改。
extract_one_feature.cpp(该文件参考过源码中extract_features.cpp修改)
#include <stdio.h> // for snprintf #include <string> #include <vector> #include <iostream> #include <fstream> #include "boost/algorithm/string.hpp" #include "google/protobuf/text_format.h" #include "leveldb/db.h" #include "leveldb/write_batch.h" #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/net.hpp" #include "caffe/proto/caffe.pb.h" #include "caffe/util/io.hpp" #include "caffe/vision_layers.hpp" using namespace caffe; // NOLINT(build/namespaces) template<typename Dtype> int feature_extraction_pipeline(int argc, char** argv); int main(int argc, char** argv) { return feature_extraction_pipeline<float>(argc, argv); // return feature_extraction_pipeline<double>(argc, argv); } template<typename Dtype> class writeDb { public: void open(string dbName) { db.open(dbName.c_str()); } void write(const Dtype &data) { db<<data; } void write(const string &str) { db<<str; } virtual ~writeDb() { db.close(); } private: std::ofstream db; }; template<typename Dtype> int feature_extraction_pipeline(int argc, char** argv) { ::google::InitGoogleLogging(argv[0]); const int num_required_args = 6; if (argc < num_required_args) { LOG(ERROR)<< "This program takes in a trained network and an input data layer, and then" " extract features of the input data produced by the net.\n" "Usage: extract_features pretrained_net_param" " feature_extraction_proto_file extract_feature_blob_name1[,name2,...]" " save_feature_leveldb_name1[,name2,...] img_path [CPU/GPU]" " [DEVICE_ID=0]\n" "Note: you can extract multiple features in one pass by specifying" " multiple feature blob names and leveldb names seperated by ','." " The names cannot contain white space characters and the number of blobs" " and leveldbs must be equal."; return 1; } int arg_pos = num_required_args; arg_pos = num_required_args; if (argc > arg_pos && strcmp(argv[arg_pos], "GPU") == 0) { LOG(ERROR)<< "Using GPU"; uint device_id = 0; if (argc > arg_pos + 1) { device_id = atoi(argv[arg_pos + 1]); CHECK_GE(device_id, 0); } LOG(ERROR) << "Using Device_id=" << device_id; Caffe::SetDevice(device_id); Caffe::set_mode(Caffe::GPU); } else { LOG(ERROR) << "Using CPU"; Caffe::set_mode(Caffe::CPU); } Caffe::set_phase(Caffe::TEST); arg_pos = 0; // the name of the executable string pretrained_binary_proto(argv[++arg_pos]);//网络模型参数文件 string feature_extraction_proto(argv[++arg_pos]); shared_ptr<Net<Dtype> > feature_extraction_net( new Net<Dtype>(feature_extraction_proto)); feature_extraction_net->CopyTrainedLayersFrom(pretrained_binary_proto);//将网络参数load进内存 string extract_feature_blob_names(argv[++arg_pos]); vector<string> blob_names;//要抽取特征的layer的名字,可以是多个 boost::split(blob_names, extract_feature_blob_names, boost::is_any_of(",")); string save_feature_leveldb_names(argv[++arg_pos]); vector<string> leveldb_names;// 这里我改写成一个levedb为一个文件,数据格式不使用真正的levedb,而是自定义 boost::split(leveldb_names, save_feature_leveldb_names, boost::is_any_of(",")); CHECK_EQ(blob_names.size(), leveldb_names.size()) << " the number of blob names and leveldb names must be equal"; size_t num_features = blob_names.size(); for (size_t i = 0; i < num_features; i++) { CHECK(feature_extraction_net->has_blob(blob_names[i])) //检测blob的名字在网络中是否存在 << "Unknown feature blob name " << blob_names[i] << " in the network " << feature_extraction_proto; } vector<shared_ptr<writeDb<Dtype> > > feature_dbs; for (size_t i = 0; i < num_features; ++i) //打开db,准备写入数据 { LOG(INFO)<< "Opening db " << leveldb_names[i]; writeDb<Dtype>* db = new writeDb<Dtype>(); db->open(leveldb_names[i]); feature_dbs.push_back(shared_ptr<writeDb<Dtype> >(db)); } LOG(ERROR)<< "Extacting Features"; const shared_ptr<Layer<Dtype> > layer = feature_extraction_net->layer_by_name("data");//获取第一层 MyImageDataLayer<Dtype>* my_layer = (MyImageDataLayer<Dtype>*)layer.get(); my_layer->setImgPath(argv[++arg_pos],1);//"/media/G/imageset/clothing/针织衫/针织衫_1.jpg" //设置图片路径 vector<Blob<float>*> input_vec; vector<int> image_indices(num_features, 0); int num_mini_batches = 1;//atoi(argv[++arg_pos]);//共多少次迭代。 每次迭代的数量在prototxt用batchsize指定 for (int batch_index = 0; batch_index < num_mini_batches; ++batch_index) //共num_mini_batches次迭代 { feature_extraction_net->Forward(input_vec);//一次正向传播 for (int i = 0; i < num_features; ++i) //多层特征 { const shared_ptr<Blob<Dtype> > feature_blob = feature_extraction_net ->blob_by_name(blob_names[i]); int batch_size = feature_blob->num(); int dim_features = feature_blob->count() / batch_size; Dtype* feature_blob_data; for (int n = 0; n < batch_size; ++n) { feature_blob_data = feature_blob->mutable_cpu_data() + feature_blob->offset(n); feature_dbs[i]->write("3 "); for (int d = 0; d < dim_features; ++d) { feature_dbs[i]->write((Dtype)(d+1)); feature_dbs[i]->write(":"); feature_dbs[i]->write(feature_blob_data[d]); feature_dbs[i]->write(" "); } feature_dbs[i]->write("\n"); } // for (int n = 0; n < batch_size; ++n) } // for (int i = 0; i < num_features; ++i) } // for (int batch_index = 0; batch_index < num_mini_batches; ++batch_index) LOG(ERROR)<< "Successfully extracted the features!"; return 0; }
#include <fstream> // NOLINT(readability/streams) #include <iostream> // NOLINT(readability/streams) #include <string> #include <utility> #include <vector> #include "caffe/layer.hpp" #include "caffe/util/io.hpp" #include "caffe/util/math_functions.hpp" #include "caffe/util/rng.hpp" #include "caffe/vision_layers.hpp" namespace caffe { template <typename Dtype> MyImageDataLayer<Dtype>::~MyImageDataLayer<Dtype>() { } template <typename Dtype> void MyImageDataLayer<Dtype>::setImgPath(string path,int label) { lines_.clear(); lines_.push_back(std::make_pair(path, label)); } template <typename Dtype> void MyImageDataLayer<Dtype>::SetUp(const vector<Blob<Dtype>*>& bottom, vector<Blob<Dtype>*>* top) { Layer<Dtype>::SetUp(bottom, top); const int new_height = this->layer_param_.image_data_param().new_height(); const int new_width = this->layer_param_.image_data_param().new_width(); CHECK((new_height == 0 && new_width == 0) || (new_height > 0 && new_width > 0)) << "Current implementation requires " "new_height and new_width to be set at the same time."; /* * 因为下面需要随便拿一张图片来初始化blob。 * 因此需要硬盘上有一张图片。 * 1 从prototxt读取一张图片的路径, * 2 其实也可以在这里将用于初始化的图片路径写死 */ /*1*/ /* const string& source = this->layer_param_.image_data_param().source(); LOG(INFO) << "Opening file " << source; std::ifstream infile(source.c_str()); string filename; int label; while (infile >> filename >> label) { lines_.push_back(std::make_pair(filename, label)); } */ /*2*/ lines_.push_back(std::make_pair("/home/linger/init.jpg",1)); //上面1和2代码可以任意用一段 lines_id_ = 0; // Read a data point, and use it to initialize the top blob. (随便)读取一张图片,来初始化blob Datum datum; CHECK(ReadImageToDatum(lines_[lines_id_].first, lines_[lines_id_].second, new_height, new_width, &datum)); // image const int crop_size = this->layer_param_.image_data_param().crop_size(); const int batch_size = 1;//this->layer_param_.image_data_param().batch_size(); const string& mean_file = this->layer_param_.image_data_param().mean_file(); if (crop_size > 0) { (*top)[0]->Reshape(batch_size, datum.channels(), crop_size, crop_size); prefetch_data_.Reshape(batch_size, datum.channels(), crop_size, crop_size); } else { (*top)[0]->Reshape(batch_size, datum.channels(), datum.height(), datum.width()); prefetch_data_.Reshape(batch_size, datum.channels(), datum.height(), datum.width()); } LOG(INFO) << "output data size: " << (*top)[0]->num() << "," << (*top)[0]->channels() << "," << (*top)[0]->height() << "," << (*top)[0]->width(); // label (*top)[1]->Reshape(batch_size, 1, 1, 1); prefetch_label_.Reshape(batch_size, 1, 1, 1); // datum size datum_channels_ = datum.channels(); datum_height_ = datum.height(); datum_width_ = datum.width(); datum_size_ = datum.channels() * datum.height() * datum.width(); CHECK_GT(datum_height_, crop_size); CHECK_GT(datum_width_, crop_size); // check if we want to have mean if (this->layer_param_.image_data_param().has_mean_file()) { BlobProto blob_proto; LOG(INFO) << "Loading mean file from" << mean_file; ReadProtoFromBinaryFile(mean_file.c_str(), &blob_proto); data_mean_.FromProto(blob_proto); CHECK_EQ(data_mean_.num(), 1); CHECK_EQ(data_mean_.channels(), datum_channels_); CHECK_EQ(data_mean_.height(), datum_height_); CHECK_EQ(data_mean_.width(), datum_width_); } else { // Simply initialize an all-empty mean. data_mean_.Reshape(1, datum_channels_, datum_height_, datum_width_); } // Now, start the prefetch thread. Before calling prefetch, we make two // cpu_data calls so that the prefetch thread does not accidentally make // simultaneous cudaMalloc calls when the main thread is running. In some // GPUs this seems to cause failures if we do not so. prefetch_data_.mutable_cpu_data(); prefetch_label_.mutable_cpu_data(); data_mean_.cpu_data(); } //--------------------------------下面是读取一张图片数据----------------------------------------------- template <typename Dtype> void MyImageDataLayer<Dtype>::fetchData() { Datum datum; CHECK(prefetch_data_.count()); Dtype* top_data = prefetch_data_.mutable_cpu_data(); Dtype* top_label = prefetch_label_.mutable_cpu_data(); ImageDataParameter image_data_param = this->layer_param_.image_data_param(); const Dtype scale = image_data_param.scale();//image_data_layer相关参数 const int batch_size = 1;//image_data_param.batch_size(); 这里我们只需要一张图片 const int crop_size = image_data_param.crop_size(); const bool mirror = image_data_param.mirror(); const int new_height = image_data_param.new_height(); const int new_width = image_data_param.new_width(); if (mirror && crop_size == 0) { LOG(FATAL) << "Current implementation requires mirror and crop_size to be " << "set at the same time."; } // datum scales const int channels = datum_channels_; const int height = datum_height_; const int width = datum_width_; const int size = datum_size_; const int lines_size = lines_.size(); const Dtype* mean = data_mean_.cpu_data(); for (int item_id = 0; item_id < batch_size; ++item_id) {//读取一图片 // get a blob CHECK_GT(lines_size, lines_id_); if (!ReadImageToDatum(lines_[lines_id_].first, lines_[lines_id_].second, new_height, new_width, &datum)) { continue; } const string& data = datum.data(); if (crop_size) { CHECK(data.size()) << "Image cropping only support uint8 data"; int h_off, w_off; // We only do random crop when we do training. h_off = (height - crop_size) / 2; w_off = (width - crop_size) / 2; // Normal copy 正常读取,把裁剪后的图片数据读给top_data for (int c = 0; c < channels; ++c) { for (int h = 0; h < crop_size; ++h) { for (int w = 0; w < crop_size; ++w) { int top_index = ((item_id * channels + c) * crop_size + h) * crop_size + w; int data_index = (c * height + h + h_off) * width + w + w_off; Dtype datum_element = static_cast<Dtype>(static_cast<uint8_t>(data[data_index])); top_data[top_index] = (datum_element - mean[data_index]) * scale; } } } } else { // Just copy the whole data 正常读取,把图片数据读给top_data if (data.size()) { for (int j = 0; j < size; ++j) { Dtype datum_element = static_cast<Dtype>(static_cast<uint8_t>(data[j])); top_data[item_id * size + j] = (datum_element - mean[j]) * scale; } } else { for (int j = 0; j < size; ++j) { top_data[item_id * size + j] = (datum.float_data(j) - mean[j]) * scale; } } } top_label[item_id] = datum.label();//读取该图片的标签 } } template <typename Dtype> Dtype MyImageDataLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, vector<Blob<Dtype>*>* top) { //更新input fetchData(); // Copy the data caffe_copy(prefetch_data_.count(), prefetch_data_.cpu_data(), (*top)[0]->mutable_cpu_data()); caffe_copy(prefetch_label_.count(), prefetch_label_.cpu_data(), (*top)[1]->mutable_cpu_data()); return Dtype(0.); } #ifdef CPU_ONLY STUB_GPU_FORWARD(ImageDataLayer, Forward); #endif INSTANTIATE_CLASS(MyImageDataLayer); } // namespace caffe
在data_layers.hpp添加一下代码,参考ImageDataLayer写的。
template <typename Dtype> class MyImageDataLayer : public Layer<Dtype> { public: explicit MyImageDataLayer(const LayerParameter& param) : Layer<Dtype>(param) {} virtual ~MyImageDataLayer(); virtual void SetUp(const vector<Blob<Dtype>*>& bottom, vector<Blob<Dtype>*>* top); virtual inline LayerParameter_LayerType type() const { return LayerParameter_LayerType_MY_IMAGE_DATA; } virtual inline int ExactNumBottomBlobs() const { return 0; } virtual inline int ExactNumTopBlobs() const { return 2; } void fetchData(); void setImgPath(string path,int label); protected: virtual Dtype Forward_cpu(const vector<Blob<Dtype>*>& bottom, vector<Blob<Dtype>*>* top); virtual void Backward_cpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom) {} vector<std::pair<std::string, int> > lines_; int lines_id_; int datum_channels_; int datum_height_; int datum_width_; int datum_size_; Blob<Dtype> prefetch_data_; Blob<Dtype> prefetch_label_; Blob<Dtype> data_mean_; Caffe::Phase phase_; };
修改caffe.proto,在适当的位置添加下面信息,也是参考image_data写的。
MY_IMAGE_DATA = 36;
optional MyImageDataParameter my_image_data_param = 36;
// Message that stores parameters used by MyImageDataLayer
message MyImageDataParameter {
// Specify the data source.
optional string source = 1;
// For data pre-processing, we can do simple scaling and subtracting the
// data mean, if provided. Note that the mean subtraction is always carried
// out before scaling.
optional float scale = 2 [default = 1];
optional string mean_file = 3;
// Specify the batch size.
optional uint32 batch_size = 4;
// Specify if we would like to randomly crop an image.
optional uint32 crop_size = 5 [default = 0];
// Specify if we want to randomly mirror data.
optional bool mirror = 6 [default = false];
// The rand_skip variable is for the data layer to skip a few data points
// to avoid all asynchronous sgd clients to start at the same point. The skip
// point would be set as rand_skip * rand(0,1). Note that rand_skip should not
// be larger than the number of keys in the leveldb.
optional uint32 rand_skip = 7 [default = 0];
// Whether or not ImageLayer should shuffle the list of files at every epoch.
optional bool shuffle = 8 [default = false];
// It will also resize images if new_height or new_width are not zero.
optional uint32 new_height = 9 [default = 0];
optional uint32 new_width = 10 [default = 0];
}
以上每行位置不在一起,可以参考读一个image_data对应的位置。
本文作者:linger
本文链接:http://blog.csdn.net/lingerlanlan/article/details/39400375
标签:deep learning caffe 机器学习 源码修改
原文地址:http://blog.csdn.net/lingerlanlan/article/details/39400375