我所使用的JDK版本时1.8.0_144。
HashMap是我们常用的一个数据结构,以键值对的形式进行操作。
源码分析如下:
//默认初始容量 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; //默认最大容量 static final int MAXIMUM_CAPACITY = 1 << 30; //默认加载因子, 指哈希表可以达到多满的尺度 static final float DEFAULT_LOAD_FACTOR = 0.75f; //实际使用的哈希表 transient Node<K,V>[] table; //HashMap大小, 即HashMap存储的键值对数量 transient int size; //键值对的阈值, 用于判断是否需要扩增哈希表容量 int threshold; //加载因子 final float loadFactor; //修改次数, 用于fail-fast机制 transient int modCount;
哈希表的类结构如下,结构就是常见的链表结构,其中有属性:hash值,key键值,value值,next链表下一个值的对象:
/** * Basic hash bin node, used for most entries. (See below for * TreeNode subclass, and in LinkedHashMap for its Entry subclass.) */ static class Node<K,V> implements Map.Entry<K,V> { final int hash; final K key; V value; Node<K,V> next; Node(int hash, K key, V value, Node<K,V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final K getKey() { return key; } public final V getValue() { return value; } public final String toString() { return key + "=" + value; } public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry<?,?> e = (Map.Entry<?,?>)o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } }
HashMap构造函数如下,所有构造函数都会直接或间接实现下面这个主要构造函数的功能:
public HashMap(int initialCapacity, float loadFactor) { //HashMap的初始容量判空 if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " +initialCapacity); //HashMap的初始容量不可超过最大容量 if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; //加载因子,默认为0.75f if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); //初始化加载因子 this.loadFactor = loadFactor; //初始化阈值 this.threshold = tableSizeFor(initialCapacity); }
HashMap存入 方法
public V put(K key, V value) {
//调用存储函数
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) { //承载当前哈希表
Node<K,V>[] tab;
//存储根据哈希值计算出的哈希表中下标的Node变量
Node<K,V> p;
int n, i;
//初始化tab为当前哈希表,并且判空,如果当前哈希表还为空,则重新分配 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length;
//如果当前根据哈希值与表长度算出的该下标的表中Node为空,则创建Node节点,并存入哈希表中该下标 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else {//否则,则是该Node的值不为空 //存储该下标的哈希值
Node<K,V> e;
//键值
K k;
//如果Node的hash值与存入的hash相同,则将当前表中Node变量赋值为e if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode)//如果Node值类型为TreeNode
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else {//否则,循环查询 for (int binCount = 0; ; ++binCount) {
//从Node值的next开始查询,如果为空,则将创建Node节点,并连接到Node的next节点上
if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; }
//如果存入成功,则e的hash值应该与hash相同 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; //循环遍历p的next,p = e即为p=p.next } }
//如果e不为空,则表示存入了数据 if (e != null) { // existing mapping for key //取出旧数据
V oldValue = e.value;
//存入新数据
if (!onlyIfAbsent || oldValue == null) e.value = value; //该方法时空方法
afterNodeAccess(e);
//返回旧数据
return oldValue; } } ++modCount; //执行次数++ if (++size > threshold) //如果表中数据个数+1,如果表中数据个数大于阈值,则重新分配表 resize(); afterNodeInsertion(evict); return null; }
取数据(与存数据类似):
public V get(Object key) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? null : e.value; } final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; if ((e = first.next) != null) { if (first instanceof TreeNode) return ((TreeNode<K,V>)first).getTreeNode(hash, key); do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }