码迷,mamicode.com
首页 > 其他好文 > 详细

【Spark篇】---SparkStreaming算子操作transform和updateStateByKey

时间:2018-02-09 17:28:42      阅读:235      评论:0      收藏:0      [点我收藏+]

标签:使用   output   检测   搜索   tor   check   org   pos   大小   

一、前述

今天分享一篇SparkStreaming常用的算子transform和updateStateByKey。

  • 可以通过transform算子,对Dstream做RDD到RDD的任意操作。其实就是DStream的类型转换。
  • 为SparkStreaming中每一个Key维护一份state状态,通过更新函数对该key的状态不断更新。

二、具体细节

        1、transform 是一个transformation类算子

package com.spark.sparkstreaming;

import java.util.ArrayList;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;

import com.google.common.base.Optional;

import scala.Tuple2;
/**
 * 过滤黑名单
 * transform操作
 * DStream可以通过transform做RDD到RDD的任意操作。
 * @author root
 *
 */
public class TransformOperator {
    public static void main(String[] args) {
        SparkConf conf = new SparkConf();
        conf.setMaster("local[2]").setAppName("transform");
        JavaStreamingContext jsc = new JavaStreamingContext(conf,Durations.seconds(5));
        
        //模拟黑名单
        List<Tuple2<String,Boolean>> blackList = new ArrayList<Tuple2<String,Boolean>>();
        blackList.add(new Tuple2<String,Boolean>("zhangsan",true));
        //将黑名单转换成RDD
        final JavaPairRDD<String, Boolean> blackNameRDD = jsc.sparkContext().parallelizePairs(blackList);
        
        //接受socket数据源
        JavaReceiverInputDStream<String> nameList = jsc.socketTextStream("node5", 9999);
        JavaPairDStream<String, String> pairNameList = 
                nameList.mapToPair(new PairFunction<String, String, String>() {

            /**
             *
             */
            private static final long serialVersionUID = 1L;

            @Override
            public Tuple2<String, String> call(String s) throws Exception {
                return new Tuple2<String, String>(s.split(" ")[1], s);
            }
        });
        JavaDStream<String> transFormResult =
                pairNameList.transform(new Function<JavaPairRDD<String,String>, JavaRDD<String>>() {

            /**
             * 
             */
            private static final long serialVersionUID = 1L;

            @Override
            public JavaRDD<String> call(JavaPairRDD<String, String> nameRDD)
                    throws Exception {
                /**
                 * nameRDD:
                 *   ("zhangsan","1 zhangsan")
                 *   ("lisi","2 lisi")
                 *   ("wangwu","3 wangwu")
                 * blackNameRDD:
                 *   ("zhangsan",true)
                 *   
                 * ("zhangsan",("1 zhangsan",[true]))
                 * 
                 */
                JavaPairRDD<String, Tuple2<String, Optional<Boolean>>> leftOuterJoin = 
                        nameRDD.leftOuterJoin(blackNameRDD);
                //打印下leftOuterJoin
                /*leftOuterJoin.foreach(new VoidFunction<Tuple2<String,Tuple2<String,Optional<Boolean>>>>() {
                    
                    *//**
                     * 
                     *//*
                    private static final long serialVersionUID = 1L;

                    @Override
                    public void call(Tuple2<String, Tuple2<String, Optional<Boolean>>> t)
                            throws Exception {
                        System.out.println(t);
                    }
                });*/
                
                
                //过滤:true的留下,false的过滤
                //("zhangsan",("1 zhangsan",[true]))
                JavaPairRDD<String, Tuple2<String, Optional<Boolean>>> filter = 
                        leftOuterJoin.filter(new Function<Tuple2<String,Tuple2<String,Optional<Boolean>>>, Boolean>() {

                    /**
                     * 
                     */
                    private static final long serialVersionUID = 1L;

                    @Override
                    public Boolean call(Tuple2<String, Tuple2<String, Optional<Boolean>>> tuple)throws Exception {
                        if(tuple._2._2.isPresent()){
                            return !tuple._2._2.get();
                        }
                        return true;
                    }
                });
                
                JavaRDD<String> resultJavaRDD = filter.map(new Function<Tuple2<String,Tuple2<String,Optional<Boolean>>>, String>() {

                    /**
                     * 
                     */
                    private static final long serialVersionUID = 1L;

                    @Override
                    public String call(
                            Tuple2<String, Tuple2<String, Optional<Boolean>>> tuple)
                            throws Exception {
                        
                        return tuple._2._1;
                    }
                });
                
                //返回过滤好的结果
                return resultJavaRDD;
            }
        });
        
        transFormResult.print();
        
        jsc.start();
        jsc.awaitTermination();
        jsc.stop();
    }
}

 2、UpdateStateByKey算子(相当于对不同批次的累加和更新)

 

UpdateStateByKey的主要功能:
 * 1、为Spark Streaming中每一个Key维护一份state状态,state类型可以是任意类型的, 可以是一个自定义的对象,那么更新函数也可以是自定义的。
 * 2、通过更新函数对该key的状态不断更新,对于每个新的batch而言,Spark Streaming会在使用updateStateByKey的时候为已经存在的key进行state的状态更新

     *  使用到updateStateByKey要开启checkpoint机制和功能。

     *   多久会将内存中的数据写入到磁盘一份?

         如果batchInterval设置的时间小于10秒,那么10秒写入磁盘一份。如果batchInterval设置的时间大于10秒,那么就会batchInterval时间间隔写入磁盘一份。

 java代码:

package com.spark.sparkstreaming;

import java.util.Arrays;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;

import com.google.common.base.Optional;

import scala.Tuple2;

/**
 * UpdateStateByKey的主要功能:
 * 1、为Spark Streaming中每一个Key维护一份state状态,state类型可以是任意类型的, 可以是一个自定义的对象,那么更新函数也可以是自定义的。
 * 2、通过更新函数对该key的状态不断更新,对于每个新的batch而言,Spark Streaming会在使用updateStateByKey的时候为已经存在的key进行state的状态更新
 * 
 * hello,3
 * spark,2
 * 
 * 如果要不断的更新每个key的state,就一定涉及到了状态的保存和容错,这个时候就需要开启checkpoint机制和功能 
 * 
 * 全面的广告点击分析
 * @author root
 *
 * 有何用?   统计广告点击流量,统计这一天的车流量,统计点击量
 */

public class UpdateStateByKeyOperator {
    public static void main(String[] args) {
        SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("UpdateStateByKeyDemo");
        JavaStreamingContext jsc = new JavaStreamingContext(conf, Durations.seconds(5));
        /**
         * 设置checkpoint目录
         * 
         * 多久会将内存中的数据(每一个key所对应的状态)写入到磁盘上一份呢?
         *     如果你的batch interval小于10s  那么10s会将内存中的数据写入到磁盘一份
         *     如果bacth interval 大于10s,那么就以bacth interval为准
         * 
         * 这样做是为了防止频繁的写HDFS
         */
        JavaSparkContext sparkContext = jsc.sparkContext();
        sparkContext.setCheckpointDir("./checkpoint");
        
//         jsc.checkpoint("hdfs://node1:9000/spark/checkpoint");
//         jsc.checkpoint("./checkpoint");
         
        JavaReceiverInputDStream<String> lines = jsc.socketTextStream("node5", 9999);

        JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
            /**
             * 
             */
            private static final long serialVersionUID = 1L;

            @Override
            public Iterable<String> call(String s) {
                return Arrays.asList(s.split(" "));
            }
        });

        JavaPairDStream<String, Integer> ones = words.mapToPair(new PairFunction<String, String, Integer>() {
            /**
             * 
             */
            private static final long serialVersionUID = 1L;

            @Override
            public Tuple2<String, Integer> call(String s) {
                return new Tuple2<String, Integer>(s, 1);
            }
        });

        JavaPairDStream<String, Integer> counts = 
                ones.updateStateByKey(new Function2<List<Integer>, Optional<Integer>, Optional<Integer>>() {

            /**
             * 
             */
            private static final long serialVersionUID = 1L;

            @Override
            public Optional<Integer> call(List<Integer> values, Optional<Integer> state) throws Exception {
                /**
                 * values:经过分组最后 这个key所对应的value  [1,1,1,1,1]
                 * state:这个key在本次之前之前的状态
                */
                Integer updateValue = 0 ;
                 if(state.isPresent()){
                     updateValue = state.get();
                 }
                 
                 for (Integer value : values) {
                     updateValue += value;
                }
                return Optional.of(updateValue);
            }
        });
        
        //output operator
         counts.print();
         
         jsc.start();
         jsc.awaitTermination();
         jsc.close();
    }
}

 scala代码:

package com.bjsxt.sparkstreaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.Durations
import org.apache.spark.streaming.StreamingContext

object Operator_UpdateStateByKey {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
    conf.setMaster("local[2]").setAppName("updateStateByKey")
    val jsc = new StreamingContext(conf,Durations.seconds(5))
    //设置日志级别
    jsc.sparkContext.setLogLevel("WARN")
    //设置checkpoint路径
    jsc.checkpoint("hdfs://node1:9000/spark/checkpoint")
    
    val lineDStream = jsc.socketTextStream("node5", 9999)
    val wordDStream = lineDStream.flatMap { _.split(" ") }
    val pairDStream = wordDStream.map { (_,1)}
    
    val result = pairDStream.updateStateByKey((seq:Seq[Int],option:Option[Int])=>{
      var value = 0
      value += option.getOrElse(0)
      for(elem <- seq){
        value +=elem
      }
      
     Option(value)
    })
    
    result.print()
    jsc.start()
    jsc.awaitTermination()
    jsc.stop()
  }
}

 结果:

技术分享图片

技术分享图片

 可见从启动以来一直维护这个累加状态!!!

 2、windows窗口函数(实现一阶段内的累加 ,而不是程序启动时)

技术分享图片

        假设每隔5s 1个batch,上图中窗口长度为15s,窗口滑动间隔10s。

        窗口长度和滑动间隔必须是batchInterval的整数倍。如果不是整数倍会检测报错

       优化后的window操作要保存状态所以要设置checkpoint路径,没有优化的window操作可以不设置checkpoint路径。

package com.spark.sparkstreaming;

import java.util.Arrays;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;

import scala.Tuple2;

/**
 * 基于滑动窗口的热点搜索词实时统计
 * @author root
 *
 */
public class WindowOperator {
    
    public static void main(String[] args) {
        SparkConf conf = new SparkConf()
                .setMaster("local[2]")
                .setAppName("WindowHotWord"); 
        
        JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(5));
        /**
         * 设置日志级别为WARN
         *
         */
        jssc.sparkContext().setLogLevel("WARN");
        /**
         * 注意:
         *  没有优化的窗口函数可以不设置checkpoint目录
         *  优化的窗口函数必须设置checkpoint目录         
         */
//           jssc.checkpoint("hdfs://node1:9000/spark/checkpoint");
           jssc.checkpoint("./checkpoint");
        JavaReceiverInputDStream<String> searchLogsDStream = jssc.socketTextStream("node04", 9999);
        //word    1
        JavaDStream<String> searchWordsDStream = searchLogsDStream.flatMap(new FlatMapFunction<String, String>() {

            /**
             * 
             */
            private static final long serialVersionUID = 1L;

            @Override
            public Iterable<String> call(String t) throws Exception {
                return Arrays.asList(t.split(" "));
            }
        });
        
        // 将搜索词映射为(searchWord, 1)的tuple格式
        JavaPairDStream<String, Integer> searchWordPairDStream = searchWordsDStream.mapToPair(
                
                new PairFunction<String, String, Integer>() {

                    private static final long serialVersionUID = 1L;

                    @Override
                    public Tuple2<String, Integer> call(String searchWord)
                            throws Exception {
                        return new Tuple2<String, Integer>(searchWord, 1);
                    }
                    
                });
        /**
         * 每隔10秒,计算最近60秒内的数据,那么这个窗口大小就是60秒,里面有12个rdd,在没有计算之前,这些rdd是不会进行计算的。
         * 那么在计算的时候会将这12个rdd聚合起来,然后一起执行reduceByKeyAndWindow操作 ,
         * reduceByKeyAndWindow是针对窗口操作的而不是针对DStream操作的。
         */
            JavaPairDStream<String, Integer> searchWordCountsDStream = 
                
                searchWordPairDStream.reduceByKeyAndWindow(new Function2<Integer, Integer, Integer>() {

                    private static final long serialVersionUID = 1L;

                    @Override
                    public Integer call(Integer v1, Integer v2) throws Exception {
                        return v1 + v2;
                    }
        }, Durations.seconds(15), Durations.seconds(5)); //窗口长度,滑动间隔
        
        
        /**
         * window窗口操作优化:
         */
//         JavaPairDStream<String, Integer> searchWordCountsDStream = 
//        
//         searchWordPairDStream.reduceByKeyAndWindow(new Function2<Integer, Integer, Integer>() {
//
//            private static final long serialVersionUID = 1L;
//
//            @Override
//            public Integer call(Integer v1, Integer v2) throws Exception {
//                return v1 + v2;
//            }
//            
//        },new Function2<Integer, Integer, Integer>() {
//
//            private static final long serialVersionUID = 1L;
//
//            @Override
//            public Integer call(Integer v1, Integer v2) throws Exception {
//                return v1 - v2;
//            }
//            
//        }, Durations.seconds(15), Durations.seconds(5));    

          searchWordCountsDStream.print();
        
        jssc.start();
        jssc.awaitTermination();
        jssc.close();
    }

}

 

 Scala代码:

package com.bjsxt.sparkstreaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.Durations
import org.apache.spark.streaming.StreamingContext

object Operator_Window {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
    conf.setMaster("local[2]").setAppName("updateStateByKey")
    val jsc = new StreamingContext(conf,Durations.seconds(5))
    //设置日志级别
    jsc.sparkContext.setLogLevel("WARN")
    //设置checkpoint路径
    jsc.checkpoint("hdfs://node1:9000/spark/checkpoint")
    val lineDStream = jsc.socketTextStream("node04", 9999)
    val wordDStream = lineDStream.flatMap { _.split(" ") }
    val mapDStream = wordDStream.map { (_,1)}
    
    
    //window没有优化后的
    val result = mapDStream.reduceByKeyAndWindow((v1:Int,v2:Int)=>{
        v1+v2
      }, Durations.seconds(60), Durations.seconds(10))
      
   //优化后的
//   val result = mapDStream.reduceByKeyAndWindow((v1:Int,v2:Int)=>{
//       v1+v2
//     }, (v1:Int,v2:Int)=>{
//       v1-v2
//     }, Durations.seconds(60), Durations.seconds(10))

    result.print()
    jsc.start()
    jsc.awaitTermination()
    jsc.stop()
  }
}

 结果:

技术分享图片

 技术分享图片

 

【Spark篇】---SparkStreaming算子操作transform和updateStateByKey

标签:使用   output   检测   搜索   tor   check   org   pos   大小   

原文地址:https://www.cnblogs.com/LHWorldBlog/p/8435528.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!