码迷,mamicode.com
首页 > 其他好文 > 详细

sklearn各种分类器简单使用

时间:2018-02-09 20:35:00      阅读:1041      评论:0      收藏:0      [点我收藏+]

标签:逻辑   imp   line   nic   target   body   regress   ica   很多   

sklearn中有很多经典分类器,使用非常简单:1.导入数据 2.导入模型 3.fit--->predict

下面的示例为在iris数据集上用各种分类器进行分类:

 1 #用各种方式在iris数据集上数据分类
 2 
 3 #载入iris数据集,其中每个特征向量有四个维度,有三种类别
 4 from sklearn import datasets
 5 iris = datasets.load_iris()
 6 print ("The iris‘ target names: ",iris.target_names)
 7 x = iris.data
 8 y = iris.target
 9 
10 #待分类的两个样本
11 test_vector = [[1,-1,2.6,-2],[0,0,7,0.8]]
12 
13 #线性回归
14 from sklearn import linear_model
15 linear = linear_model.LinearRegression()
16 linear.fit(x,y)
17 print ("linear‘s score: ",linear.score(x,y))
18 print ("w:",linear.coef_)       
19 print ("b:",linear.intercept_)  
20 print ("predict: ",linear.predict(test_vector))
21 
22 #逻辑回归
23 LR = linear_model.LogisticRegression()
24 LR.fit(x,y)
25 print ("LogisticRegression:",LR.predict(test_vector))
26 
27 #决策树
28 from sklearn import tree
29 TR = tree.DecisionTreeClassifier(criterion=entropy)   
30 TR.fit(x,y)
31 print ("DecisionTree:",TR.predict(test_vector))
32 
33 #支持向量机
34 from sklearn import svm
35 SV = svm.SVC()
36 SV.fit(x,y)
37 print ("svm:",SV.predict(test_vector))
38 
39 #朴素贝叶斯
40 from sklearn import naive_bayes
41 NB = naive_bayes.GaussianNB()
42 NB.fit(x,y)
43 print ("naive_bayes:",NB.predict(test_vector))
44 
45 #K近邻
46 from sklearn import neighbors
47 KNN = neighbors.KNeighborsClassifier(n_neighbors = 3)
48 KNN.fit(x,y)
49 print ("KNeighbors:",KNN.predict(test_vector))
50 ‘‘‘
51 he iris‘ target names:  [‘setosa‘ ‘versicolor‘ ‘virginica‘]
52 linear‘s score:  0.930422367533
53 w: [-0.10974146 -0.04424045  0.22700138  0.60989412]
54 b: 0.192083994828
55 predict:  [-0.50300167  2.26900897]
56 LogisticRegression: [1 2]
57 DecisionTree: [1 2]
58 svm: [2 2]
59 naive_bayes: [2 2]
60 KNeighbors: [0 1]
61 ‘‘‘

 

sklearn各种分类器简单使用

标签:逻辑   imp   line   nic   target   body   regress   ica   很多   

原文地址:https://www.cnblogs.com/cnXuYang/p/8436276.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!