标签:sp c 时间 ad 算法 r bs table 用户
根据用户推荐重点是反应和用户兴趣相似的小群体的热点,根据物品推荐着重与用户过去的历史兴趣,即:
项目 | UserCF | ItemCF |
性能 | 适用于用户较少的场合,如果用户过多,计算用户相似度矩阵的代价交大 | 适用于物品数明显小于用户数的场合,如果物品很多,计算物品相似度矩阵的代价交大 |
领域 | 实效性要求高,用户个性化兴趣要求不高 | 长尾物品丰富,用户个性化需求强烈 |
实时性 | 用户有新行为,不一定需要推荐结果立即变化 | 用户有新行为,一定会导致推荐结果的实时变化 |
冷启动 | 在新用户对少的物品产生行为后,不能立即对他进行个性化推荐,因为用户相似度是离线计算的 新物品上线后一段时间,一旦有用户对物品产生行为,就可以将新物品推荐给其他用户 |
新用户只要对一个物品产生行为,就能推荐相关物品给他,但无法在不离线更新物品相似度表的情况下将新物品推荐给用户 |
推荐理由 | 很难提供 | 可以根据用户历史行为归纳推荐理由 |
推荐算法之用户推荐(UserCF)和物品推荐(ItemCF)对比
标签:sp c 时间 ad 算法 r bs table 用户
原文地址:http://www.cnblogs.com/scwanglijun/p/3982716.html