题目如下:
A move consists of taking a point (x, y) and transforming it to either (x, x+y) or (x+y, y).
Given a starting point (sx, sy) and a target point (tx, ty), return True if and only if a sequence of moves exists to transform the point (sx, sy) to (tx, ty). Otherwise, return False.
Examples:
Input: sx = 1, sy = 1, tx = 3, ty = 5
Output: True
Explanation:
One series of moves that transforms the starting point to the target is:
(1, 1) -> (1, 2)
(1, 2) -> (3, 2)
(3, 2) -> (3, 5)
Input: sx = 1, sy = 1, tx = 2, ty = 2
Output: False
Input: sx = 1, sy = 1, tx = 1, ty = 1
Output: True
Note:
sx, sy, tx, ty will all be integers in the range [1, 10^9].
解题思路:看到sx,sy,tx,ty的最大值可以是10^9,那就基本上放弃穷举法了。本题比较适合倒推法,例如题目中给的例子[1,1] -> [3,5]:要想得到[3,5],那么前面的一组数组必定是[3,2] (即[3,5-3])计算得来,而[3,2]又是从[1,2] (即[3-2,2])来的,最后推出[1,1]。 原理就是用[tx,ty]中较大值减去较小值依次计算得来。所以,很快我就写出来如下代码:
while tx > 0 and ty > 0: if ty == tx: ret = False break if ty > tx: ty -= tx else: tx -=ty if sx == tx and sy == ty: ret = True break return ret
可以这段代码却被[1,1,10^9,1]的输入打败。一时间我竟然想不出更好的办法,直到第二天,脑子里才出现了“用除法代替减法”的方案。方案也很简单,如果tx > ty,那么tx可以利用除法得到一个不小于max(ty,sx)的最小数。完整代码如下:
class Solution(object): def reachingPoints(self, sx, sy, tx, ty): """ :type sx: int :type sy: int :type tx: int :type ty: int :rtype: bool """ if sx == tx and sy == ty: return True ret = True while tx > 0 and ty > 0: if ty == tx: ret = False break if ty > tx: max_y = max(tx,sy) div = (ty - max_y) / tx div = max (div,1) ty -= div * tx else: max_x = max(ty,sx) div = (tx - max_x) / ty div = max (div,1) tx -= div * ty if sx == tx and sy == ty: ret = True break return ret