码迷,mamicode.com
首页 > 其他好文 > 详细

itertools模块

时间:2018-02-12 13:47:54      阅读:235      评论:0      收藏:0      [点我收藏+]

标签:size   rto   div   start   mat   top   gtk   一个   data   

itertools

这里主要介绍itertools的常用函数

accumulate(iterable[, func])

将一个二元操作的函数作用于一个可迭代对象上,每次循环计算时,函数的两个参数一个是可迭代对象中当前值,另一个是上次计算得到的结果。函数的返回值是一个由每次计算得到的结果组成的可迭代对象。
相当于如下功能:

def accumulate(iterable, func=operator.add):
    'Return running totals'
    # accumulate([1,2,3,4,5]) --> 1 3 6 10 15
    # accumulate([1,2,3,4,5], operator.mul) --> 1 2 6 24 120
    it = iter(iterable)
    try:
        total = next(it)
    except StopIteration:
        return
    yield total
    for element in it:
        total = func(total, element)
        yield total

二元操作函数可以是如下:

  • min(): 计算最小值
  • max(): 计算最大值
  • operator.mul(): 叠乘
  • operator.add(): 叠加

使用示例:

>>> data = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8]
>>> list(accumulate(data, operator.mul))     # 叠乘
[3, 12, 72, 144, 144, 1296, 0, 0, 0, 0]
>>> list(accumulate(data, max))              # 计算最大值
[3, 4, 6, 6, 6, 9, 9, 9, 9, 9]
# 将上一个结果乘1.25,然后加上下一个迭代值
>>> cashflows = [1000, -90, -90, -90, -90]
>>> list(accumulate(cashflows, lambda bal, pmt: bal*1.05 + pmt))
[1000, 960.0, 918.0, 873.9000000000001, 827.5950000000001]
# 这个示例相当于单目迭代运算
>>> logistic_map = lambda x, _:  r * x * (1 - x)
>>> r = 3.8
>>> x0 = 0.4
>>> inputs = repeat(x0, 36)     # 初始化值
>>> [format(x, '.2f') for x in accumulate(inputs, logistic_map)]
['0.40', '0.91', '0.30', '0.81', '0.60', '0.92', '0.29', '0.79', '0.63',
 '0.88', '0.39', '0.90', '0.33', '0.84', '0.52', '0.95', '0.18', '0.57',
 '0.93', '0.25', '0.71', '0.79', '0.63', '0.88', '0.39', '0.91', '0.32',
 '0.83', '0.54', '0.95', '0.20', '0.60', '0.91', '0.30', '0.80', '0.60']

chain(*iterables)
将多个可迭代对象进行合并,相当于如下代码:

def chain(*iterables):
    # chain('ABC', 'DEF') --> A B C D E F
    for it in iterables:
        for element in it:
            yield element

使用示例:

>>> from itertools import chain
>>> chain([1, 2, 3], [4, 5, 6])
<itertools.chain object at 0x7f751ad90b70>
>>> a = chain([1, 2, 3], [4, 5, 6])
>>> for i in a:
...     print(i)
... 
1
2
3
4
5
6

combinations(iterable, r)

将可迭代对象中每r个元素按序进行组合,功能相当于:

def combinations(iterable, r):
    # combinations('ABCD', 2) --> AB AC AD BC BD CD
    # combinations(range(4), 3) --> 012 013 023 123
    pool = tuple(iterable)
    n = len(pool)
    if r > n:
        return
    indices = list(range(r))
    yield tuple(pool[i] for i in indices)
    while True:
        for i in reversed(range(r)):
            if indices[i] != i + n - r:
                break
        else:
            return
        indices[i] += 1
        for j in range(i+1, r):
            indices[j] = indices[j-1] + 1
        yield tuple(pool[i] for i in indices)

使用示例:

>>> from itertools import combinations
>>> comb = combinations('abcd', 3)
>>> for i in comb:
...     print(i)
... 
('a', 'b', 'c')
('a', 'b', 'd')
('a', 'c', 'd')
('b', 'c', 'd')

combinations_with_replacement(iterable, r)

按照顺序从可迭代对象中取r个元素进行组合,允许使用重复的元素,功能相当于:

def combinations_with_replacement(iterable, r):
    # combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC
    pool = tuple(iterable)
    n = len(pool)
    if not n and r:
        return
    indices = [0] * r
    yield tuple(pool[i] for i in indices)
    while True:
        for i in reversed(range(r)):
            if indices[i] != n - 1:
                break
        else:
            return
        indices[i:] = [indices[i] + 1] * (r - i)
        yield tuple(pool[i] for i in indices)

使用示例:

>>> from itertools import combinations_with_replacement
>>> a = combinations_with_replacement('abc', 2)
>>> for i in a:
...     print(i)
... 
('a', 'a')
('a', 'b')
('a', 'c')
('b', 'b')
('b', 'c')
('c', 'c')

compress(data, selectors)

将selectors中为值为True的位置在data对应的值返回,相当于如下代码:

def compress(data, selectors):
    # compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F
    return (d for d, s in zip(data, selectors) if s)

使用示例:

>>> from itertools import compress
>>> a = compress('abcdef', [1, 0, 1, 0, 1, 1])
>>> for i in a:
...     print(i)
... 
a
c
e
f

count(start=0, step=1)

从start开始每次加step组成一个可迭代对象,相当于:

def count(start=0, step=1):
    # count(10) --> 10 11 12 13 14 ...
    # count(2.5, 0.5) -> 2.5 3.0 3.5 ...
    n = start
    while True:
        yield n
        n += step

cycle(iterable)

循环迭代,依次从一个可迭代对象中取元素,当到达最后一个元素之后又返回至第一个元素,相当于:

def cycle(iterable):
    # cycle('ABCD') --> A B C D A B C D A B C D ...
    saved = []
    for element in iterable:
        yield element
        saved.append(element)
    while saved:
        for element in saved:
              yield element

dropwhile(predicate, iterable)

从第一个元素开始,移除满足predicate为True的元素直到遇到使predicate的值为False,返回后面的所有元素。相当于:

def dropwhile(predicate, iterable):
    # dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1
    iterable = iter(iterable)
    for x in iterable:
        if not predicate(x):
            yield x
            break
    for x in iterable:
        yield x

使用示例:

>>> from itertools import dropwhile
>>> dropwhile(lambda x: x<5, [1, 4, 6, 4, 1])
<itertools.dropwhile object at 0x7f94c3507888>
>>> for x in dropwhile(lambda x: x<5, [1, 4, 6, 4, 1]):
...     print(x)
... 
6
4
1

filterfalse(predicate, iterable)

移除所有使得predicate为False的元素,相当于:

def filterfalse(predicate, iterable):
    # filterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8
    if predicate is None:
        predicate = bool
    for x in iterable:
        if not predicate(x):
            yield x

groupby(iterable, key=None)

按照key定义的规则对可迭代对象进行分组,相当于:

class groupby:
    # [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B
    # [list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D
    def __init__(self, iterable, key=None):
        if key is None:
            key = lambda x: x
        self.keyfunc = key
        self.it = iter(iterable)
        self.tgtkey = self.currkey = self.currvalue = object()
    def __iter__(self):
        return self
    def __next__(self):
        while self.currkey == self.tgtkey:
            self.currvalue = next(self.it)    # Exit on StopIteration
            self.currkey = self.keyfunc(self.currvalue)
        self.tgtkey = self.currkey
        return (self.currkey, self._grouper(self.tgtkey))
    def _grouper(self, tgtkey):
        while self.currkey == tgtkey:
            yield self.currvalue
            try:
                self.currvalue = next(self.it)
            except StopIteration:
                return
            self.currkey = self.keyfunc(self.currvalue)

使用示例:

>>> from itertools import groupby
>>> a = ['aa', 'ab', 'abc', 'bcd', 'abcde']
>>> for i, k in groupby(a, len):
...     print(i, list(k))
... 
2 ['aa', 'ab']
3 ['abc', 'bcd']
5 ['abcde']
>>> from itertools import groupby
>>> qs = [{'data': 1}, {'data': 2}]
>>> [(name, list(group)) for name, group in groupby(qs, lambda p: p['data'])]
[(1, [{'data': 1}]), (2, [{'data': 2}])]

islice(iterable, stop)

islice(iterable, start, stop[, step])

通过起始位置和步长从可迭代对象中取出元素,相当于:

def islice(iterable, *args):
    # islice('ABCDEFG', 2) --> A B
    # islice('ABCDEFG', 2, 4) --> C D
    # islice('ABCDEFG', 2, None) --> C D E F G
    # islice('ABCDEFG', 0, None, 2) --> A C E G
    s = slice(*args)
    it = iter(range(s.start or 0, s.stop or sys.maxsize, s.step or 1))
    try:
        nexti = next(it)
    except StopIteration:
        return
    for i, element in enumerate(iterable):
        if i == nexti:
            yield element
            nexti = next(it)

permutations(iterable, r=None)

从可迭代对象中取出任意r个元素排列组合,返回所有可能的结果,相当于:

def permutations(iterable, r=None):
    # permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
    # permutations(range(3)) --> 012 021 102 120 201 210
    pool = tuple(iterable)
    n = len(pool)
    r = n if r is None else r
    if r > n:
        return
    indices = list(range(n))
    cycles = list(range(n, n-r, -1))
    yield tuple(pool[i] for i in indices[:r])
    while n:
        for i in reversed(range(r)):
            cycles[i] -= 1
            if cycles[i] == 0:
                indices[i:] = indices[i+1:] + indices[i:i+1]
                cycles[i] = n - i
            else:
                j = cycles[i]
                indices[i], indices[-j] = indices[-j], indices[i]
                yield tuple(pool[i] for i in indices[:r])
                break
        else:
            return

product(*args, repeat=1)
返回多个可迭代对象的笛卡尔集,相当于:

def product(*args, repeat=1):
    # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
    # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
    pools = [tuple(pool) for pool in args] * repeat
    result = [[]]
    for pool in pools:
        result = [x+[y] for x in result for y in pool]
    for prod in result:
        yield tuple(prod)

使用示例:

>>> from itertools import product
>>> a = (1, 2, 3)
>>> b = ('A', 'B', 'C')
>>> c = ('d', 'e', 'f')
>>> pros = product(a, b, c)
>>> for elem in pros:
...     print(elem)
... 
(1, 'A', 'd')
(1, 'A', 'e')
(1, 'A', 'f')
(1, 'B', 'd')
(1, 'B', 'e')
(1, 'B', 'f')
(1, 'C', 'd')
(1, 'C', 'e')
(1, 'C', 'f')
(2, 'A', 'd')
(2, 'A', 'e')
(2, 'A', 'f')
(2, 'B', 'd')
(2, 'B', 'e')
(2, 'B', 'f')
(2, 'C', 'd')
(2, 'C', 'e')
(2, 'C', 'f')
(3, 'A', 'd')
(3, 'A', 'e')
(3, 'A', 'f')
(3, 'B', 'd')
(3, 'B', 'e')
(3, 'B', 'f')
(3, 'C', 'd')
(3, 'C', 'e')
(3, 'C', 'f')

repeat(object[, times])

重复一个对象times次,如果没有定义times则一直重复,相当于:

def repeat(object, times=None):
    # repeat(10, 3) --> 10 10 10
    if times is None:
        while True:
            yield object
    else:
        for i in range(times):
            yield object

starmap(function, iterable)

将可迭代对象的每个元素作为参数执行function,相当于:

def starmap(function, iterable):
    # starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
    for args in iterable:
        yield function(*args)

takewhile(predicate, iterable)

从可迭代对象的第一个元素开始,返回满足predicate为True的值,当predicate值为False则终止,相当于:

def takewhile(predicate, iterable):
    # takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4
    for x in iterable:
        if predicate(x):
            yield x
        else:
            break

tee(iterable, n=2)

从 iterable 创建 n 个独立的迭代器,以元组的形式返回,n 的默认值是 2,相当于:

def tee(iterable, n=2):
    it = iter(iterable)
    deques = [collections.deque() for i in range(n)]
    def gen(mydeque):
        while True:
            if not mydeque:             # when the local deque is empty
                try:
                    newval = next(it)   # fetch a new value and
                except StopIteration:
                    return
                for d in deques:        # load it to all the deques
                    d.append(newval)
            yield mydeque.popleft()
    return tuple(gen(d) for d in deques)

使用示例:

>>> from itertools import tee
>>> iter1, iter2 = tee('abcde')
>>> list(iter1)
['a', 'b', 'c', 'd', 'e']
>>> list(iter2)
['a', 'b', 'c', 'd', 'e']
>>> tee('abcde', 3)
(<itertools._tee object at 0x7f94c3507dc8>, <itertools._tee object at 0x7f94c3507d48>, <itertools._tee object at 0x7f94c3507e08>)

zip_longest(*iterables, fillvalue=None)
依次从每个iterables中取出一个元素进行组合,当短的iterable取完了时用fillvalue进行填充,相当于:

class ZipExhausted(Exception):
    pass

def zip_longest(*args, **kwds):
    # zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-
    fillvalue = kwds.get('fillvalue')
    counter = len(args) - 1
    def sentinel():
        nonlocal counter
        if not counter:
            raise ZipExhausted
        counter -= 1
        yield fillvalue
    fillers = repeat(fillvalue)
    iterators = [chain(it, sentinel(), fillers) for it in args]
    try:
        while iterators:
            yield tuple(map(next, iterators))
    except ZipExhausted:
        pass

itertools模块

标签:size   rto   div   start   mat   top   gtk   一个   data   

原文地址:https://www.cnblogs.com/suraer/p/8444154.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!