以下是创建的二叉树模型
创建树
package com.demo.tree; public class Node { private int data; private Node leftNode; //左节点 private Node rightNode; //右节点 public Node(int data, Node leftNode, Node rightNode){ this.data = data; this.leftNode = leftNode; this.rightNode = rightNode; } public int getData() { return data; } public void setData(int data) { this.data = data; } public Node getLeftNode() { return leftNode; } public void setLeftNode(Node leftNode) { this.leftNode = leftNode; } public Node getRightNode() { return rightNode; } public void setRightNode(Node rightNode) { this.rightNode = rightNode; } }
非递归方式
package com.demo.tree; import java.util.Stack; public class BinaryTree { public Node init() {// 注意必须逆序建立,先建立子节点,再逆序往上建立,因为非叶子结点会使用到下面的节点,而初始化是按顺序初始化的,不逆序建立会报错 Node J = new Node(8, null, null); Node H = new Node(4, null, null); Node G = new Node(2, null, null); Node F = new Node(7, null, J); Node E = new Node(5, H, null); Node D = new Node(1, null, G); Node C = new Node(9, F, null); Node B = new Node(3, D, E); Node A = new Node(6, B, C); return A; // 返回根节点 } public void printNode(Node node) { System.out.print(node.getData()); } public void theFirstTraversal_Stack(Node root) { // 先序遍历 Stack<Node> stack = new Stack<Node>(); Node node = root; while (node != null || stack.size() > 0) { // 将所有左孩子压栈 if (node != null) { // 压栈之前先访问 printNode(node); stack.push(node); node = node.getLeftNode(); } else { node = stack.pop(); node = node.getRightNode(); } } } public void theInOrderTraversal_Stack(Node root) { // 中序遍历 Stack<Node> stack = new Stack<Node>(); Node node = root; while (node != null || stack.size() > 0) { if (node != null) { stack.push(node); // 直接压栈 node = node.getLeftNode(); } else { node = stack.pop(); // 出栈并访问 printNode(node); node = node.getRightNode(); } } } public void thePostOrderTraversal_Stack(Node root) { // 后序遍历 Stack<Node> stack = new Stack<Node>(); Stack<Node> output = new Stack<Node>();// 构造一个中间栈来存储逆后序遍历的结果 Node node = root; while (node != null || stack.size() > 0) { if (node != null) { output.push(node); stack.push(node); node = node.getRightNode(); } else { node = stack.pop(); node = node.getLeftNode(); } } System.out.println(output.size()); while (output.size() > 0) { printNode(output.pop()); } } public static void main(String[] args) { BinaryTree tree = new BinaryTree(); Node root = tree.init(); System.out.println("先序遍历"); tree.theFirstTraversal_Stack(root); System.out.println(""); System.out.println("中序遍历"); tree.theInOrderTraversal_Stack(root); System.out.println(""); System.out.println("后序遍历"); tree.thePostOrderTraversal_Stack(root); System.out.println(""); } }
输出结果:
先序遍历
631254978
中序遍历
123456789
后序遍历
214538796
递归模式
public class BinaryTree { /** * @author yaobo * 二叉树的先序中序后序排序 */ public Node init() {//注意必须逆序建立,先建立子节点,再逆序往上建立,因为非叶子结点会使用到下面的节点,而初始化是按顺序初始化的,不逆序建立会报错 Node J = new Node(8, null, null); Node H = new Node(4, null, null); Node G = new Node(2, null, null); Node F = new Node(7, null, J); Node E = new Node(5, H, null); Node D = new Node(1, null, G); Node C = new Node(9, F, null); Node B = new Node(3, D, E); Node A = new Node(6, B, C); return A; //返回根节点 } public void printNode(Node node){ System.out.print(node.getData()); } public void theFirstTraversal(Node root) { //先序遍历 printNode(root); if (root.getLeftNode() != null) { //使用递归进行遍历左孩子 theFirstTraversal(root.getLeftNode()); } if (root.getRightNode() != null) { //递归遍历右孩子 theFirstTraversal(root.getRightNode()); } } public void theInOrderTraversal(Node root) { //中序遍历 if (root.getLeftNode() != null) { theInOrderTraversal(root.getLeftNode()); } printNode(root); if (root.getRightNode() != null) { theInOrderTraversal(root.getRightNode()); } } public void thePostOrderTraversal(Node root) { //后序遍历 if (root.getLeftNode() != null) { thePostOrderTraversal(root.getLeftNode()); } if(root.getRightNode() != null) { thePostOrderTraversal(root.getRightNode()); } printNode(root); } public static void main(String[] args) { BinaryTree tree = new BinaryTree(); Node root = tree.init(); System.out.println("先序遍历"); tree.theFirstTraversal(root); System.out.println(""); System.out.println("中序遍历"); tree.theInOrderTraversal(root); System.out.println(""); System.out.println("后序遍历"); tree.thePostOrderTraversal(root); System.out.println(""); } }