码迷,mamicode.com
首页 > 其他好文 > 详细

函数复习

时间:2018-02-13 19:52:32      阅读:171      评论:0      收藏:0      [点我收藏+]

标签:glob   结构   修改   位置   blog   特性   栈帧   else   而不是   

1 什么是函数?
函数是组织好的,可重复使用的,用来实现单一或相关功能的代码块。

2 为什么要用函数?
函数可以提高应用的模块性,和代码重复利用率。它包括内置函数与自定义函数
3 函数的分类:内置函数与自定义函数
内置函数:http://www.cnblogs.com/ldq1996/p/8447100.html
自定义函数:
def fun():
pass
fun()
4 如何自定义函数
原则: 先定义后调用
函数在定义阶段都干了什么:只检测语法,不执行代码
定义函数的三种形式:
#1、无参:应用场景仅仅只是执行一些操作,比如与用户交互,打印
#2、有参:需要根据外部传进来的参数,才能执行相应的逻辑,比如统计长度,求最大值最小值
#3、空函数:设计代码结构

#定义阶段
def tell_tag(tag,n): #有参数
    print(tag*n)

def tell_msg(): #无参数
    print(hello world)

#调用阶段
tell_tag(*,12)
tell_msg()
tell_tag(*,12)

‘‘‘
************
hello world
************
‘‘‘

#结论:
#1、定义时无参,意味着调用时也无需传入参数
#2、定义时有参,意味着调用时则必须传入参数

 

5 调用函数
如何调用函数

函数的调用:函数名加括号
1 先找到名字
2 根据名字调用代码

 


函数的返回值

无return->None
return 1个值->返回1个值
return 逗号分隔多个值->元组
什么时候该有返回值?
    调用函数,经过一系列的操作,最后要拿到一个明确的结果,则必须要有返回值
    通常有参函数需要有返回值,输入参数,经过计算,得到一个最终的结果
什么时候不需要有返回值?
    调用函数,仅仅只是执行一系列的操作,最后不需要得到什么结果,则无需有返回值
    通常无参函数不需要有返回值

 


函数参数的应用:形参和实参,位置参数,关键字参数,默认参数,*args,**kwargs

#1、位置参数:按照从左到右的顺序定义的参数
        位置形参:必选参数
        位置实参:按照位置给形参传值

#2、关键字参数:按照key=value的形式定义的实参
        无需按照位置为形参传值
        注意的问题:
                1. 关键字实参必须在位置实参右面
                2. 对同一个形参不能重复传值

#3、默认参数:形参在定义时就已经为其赋值
        可以传值也可以不传值,经常需要变得参数定义成位置形参,变化较小的参数定义成默认参数(形参)
        注意的问题:
                1. 只在定义时赋值一次
                2. 默认参数的定义应该在位置形参右面
                3. 默认参数通常应该定义成不可变类型


#4、可变长参数:
        可变长指的是实参值的个数不固定
        而实参有按位置和按关键字两种形式定义,针对这两种形式的可变长,形参对应有两种解决方案来完整地存放它们,分别是*args,**kwargs

        ===========*args===========
        def foo(x,y,*args):
            print(x,y)
            print(args)
        foo(1,2,3,4,5)

        def foo(x,y,*args):
            print(x,y)
            print(args)
        foo(1,2,*[3,4,5])


        def foo(x,y,z):
            print(x,y,z)
        foo(*[1,2,3])

        ===========**kwargs===========
        def foo(x,y,**kwargs):
            print(x,y)
            print(kwargs)
        foo(1,y=2,a=1,b=2,c=3)

        def foo(x,y,**kwargs):
            print(x,y)
            print(kwargs)
        foo(1,y=2,**{a:1,b:2,c:3})


        def foo(x,y,z):
            print(x,y,z)
        foo(**{z:1,x:2,y:3})

        ===========*args+**kwargs===========

        def foo(x,y):
            print(x,y)

        def wrapper(*args,**kwargs):
            print(====>)
            foo(*args,**kwargs)

#5、命名关键字参数:*后定义的参数,必须被传值(有默认值的除外),且必须按照关键字实参的形式传递
可以保证,传入的参数中一定包含某些关键字
        def foo(x,y,*args,a=1,b,**kwargs):
            print(x,y)
            print(args)
            print(a)
            print(b)
            print(kwargs)

        foo(1,2,3,4,5,b=3,c=4,d=5)
        结果:
            1
            2
            (3, 4, 5)
            1
            3
            {c: 4, d: 5}

 

6 高阶函数(函数对象)

#函数是第一类对象,即函数可以当做数据传递
def foo():
    print(foo)

def bar():
    print(bar)

dic={
    foo:foo,
    bar:bar,
}
while True:
    choice=input(>>: ).strip()
    if choice in dic:
        dic[choice]()

 


7 函数嵌套

def max(x,y):
    return x if x > y else y

def max4(a,b,c,d):
    res1=max(a,b)
    res2=max(res1,c)
    res3=max(res2,d)
    return res3
print(max4(1,2,3,4))

 


8 作用域与名称空间

一 什么是名称空间?

#名称空间:存放名字的地方,三种名称空间,(之前遗留的问题x=1,1存放于内存中,那名字x存放在哪里呢?名称空间正是存放名字x与1绑定关系的地方)
二 名称空间的加载顺序

python test.py
#1、python解释器先启动,因而首先加载的是:内置名称空间
#2、执行test.py文件,然后以文件为基础,加载全局名称空间
#3、在执行文件的过程中如果调用函数,则临时产生局部名称空间
三 名字的查找顺序

复制代码
局部名称空间--->全局名称空间--->内置名称空间

#需要注意的是:在全局无法查看局部的,在局部可以查看全局的,如下示例

# max=1
def f1():
    # max=2
    def f2():
        # max=3
        print(max)
    f2()
f1()
print(max) 

作用域

#1、作用域即范围
        - 全局范围(内置名称空间与全局名称空间属于该范围):全局存活,全局有效
      - 局部范围(局部名称空间属于该范围):临时存活,局部有效
#2、作用域关系是在函数定义阶段就已经固定的,与函数的调用位置无关,如下
x=1
def f1():
    def f2():
        print(x)
    return f2
x=100
def f3(func):
    x=2
    func()
x=10000
f3(f1())

#3、查看作用域:globals(),locals()


LEGB 代表名字查找顺序: locals -> enclosing function -> globals -> __builtins__
locals 是函数内的名字空间,包括局部变量和形参
enclosing 外部嵌套函数的名字空间(闭包中常见)
globals 全局变量,函数定义所在模块的名字空间
builtins 内置模块的名字空间

 

 


9 装饰器

原则:开放封闭原则
    什么是装饰器:
        装饰器他人的器具,本身可以是任意可调用对象,被装饰者也可以是任意可调用对象。
        强调装饰器的原则:1 不修改被装饰对象的源代码 2 不修改被装饰对象的调用方式
        装饰器的目标:在遵循1和2的前提下,为被装饰对象添加上新功能
  
#有参装饰器
def auth(driver=file): def auth2(func): def wrapper(*args,**kwargs): name=input("user: ") pwd=input("pwd: ") if driver == file: if name == egon and pwd == 123: print(login successful) res=func(*args,**kwargs) return res elif driver == ldap: print(ldap) return wrapper return auth2 @auth(driver=file) def foo(name): print(name) foo(egon)

 


10 迭代器与生成器及协程函数

迭代器

#1、为何要有迭代器?
对于序列类型:字符串、列表、元组,我们可以使用索引的方式迭代取出其包含的元素。但对于字典、集合、文件等类型是没有索引的,若还想取出其内部包含的元素,则必须找出一种不依赖于索引的迭代方式,这就是迭代器

#2、什么是可迭代对象?
可迭代对象指的是内置有__iter__方法的对象,即obj.__iter__,如下
hello.__iter__
(1,2,3).__iter__
[1,2,3].__iter__
{a:1}.__iter__
{a,b}.__iter__
open(a.txt).__iter__

#3、什么是迭代器对象?
可迭代对象执行obj.__iter__()得到的结果就是迭代器对象
而迭代器对象指的是即内置有__iter__又内置有__next__方法的对象

文件类型是迭代器对象
open(a.txt).__iter__()
open(a.txt).__next__()


#4、注意:
迭代器对象一定是可迭代对象,而可迭代对象不一定是迭代器对象

#优点:
  - 提供一种统一的、不依赖于索引的迭代方式
  - 惰性计算,节省内存
#缺点:
  - 无法获取长度(只有在next完毕才知道到底有几个值)
  - 一次性的,只能往后走,不能往前退

生成器

什么是生成器?
    #只要函数内部包含有yield关键字,那么函数名()的到的结果就是生成器,并且不会执行函数内部代码

def func():
    print(====>first)
    yield 1
    print(====>second)
    yield 2
    print(====>third)
    yield 3
    print(====>end)

g=func()
print(g) #<generator object func at 0x0000000002184360> 
生成器是迭代器
g.__iter__
g.__next__
#2、所以生成器就是迭代器,因此可以这么取值
res=next(g)
print(res)

协程函数

#yield关键字的另外一种使用形式:表达式形式的yield
def eater(name):
    print(%s 准备开始吃饭啦 %name)
    food_list=[]
    while True:
        food=yield food_list
        print(%s 吃了 %s % (name,food))
        food_list.append(food)

g=eater(egon)
g.send(None) #对于表达式形式的yield,在使用时,第一次必须传None,g.send(None)等同于next(g)
g.send(蒸羊羔)
g.send(蒸鹿茸)
g.send(蒸熊掌)
g.send(烧素鸭)
g.close()
g.send(烧素鹅)
g.send(烧鹿尾)

 

11 三元运算,列表解析、生成器表达式

三元元算

name=input(姓名>>: )
res=SB if name == alex else NB
print(res)

 

列表生成式

#1、示例
egg_list=[]
for i in range(10):
    egg_list.append(鸡蛋%s %i)

egg_list=[鸡蛋%s %i for i in range(10)]

#2、语法
[expression for item1 in iterable1 if condition1
for item2 in iterable2 if condition2
...
for itemN in iterableN if conditionN
]
类似于
res=[]
for item1 in iterable1:
    if condition1:
        for item2 in iterable2:
            if condition2
                ...
                for itemN in iterableN:
                    if conditionN:
                        res.append(expression)

#3、优点:方便,改变了编程习惯,可称之为声明式编程

 

生成器表达式

#1、把列表推导式的[]换成()就是生成器表达式

#2、示例:生一筐鸡蛋变成给你一只老母鸡,用的时候就下蛋,这也是生成器的特性
>>> chicken=(鸡蛋%s %i for i in range(5))
>>> chicken
<generator object <genexpr> at 0x10143f200>
>>> next(chicken)
鸡蛋0
>>> list(chicken) #因chicken可迭代,因而可以转成列表
[鸡蛋1, 鸡蛋2, 鸡蛋3, 鸡蛋4,]

#3、优点:省内存,一次只产生一个值在内存中

 


12 函数的递归调用

定义:#递归调用是函数嵌套调用的一种特殊形式,函数在调用时,直接或间接调用了自身,就是递归调用
#python中的递归
python中的递归效率低,需要在进入下一次递归时保留当前的状态,在其他语言中可以有解决方法:尾递归优化,即在函数的最后一步(而非最后一行)调用自己,尾递归优化:http://egon09.blog.51cto.com/9161406/1842475
但是python又没有尾递归,且对递归层级做了限制

#总结递归的使用:
1. 必须有一个明确的结束条件

2. 每次进入更深一层递归时,问题规模相比上次递归都应有所减少

3. 递归效率不高,递归层次过多会导致栈溢出(在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出)

 

最大递归深度的设置

import sys
sys.getrecursionlimit()
sys.setrecursionlimit(2000)
n=1
def test():
    global n
    print(n)
    n+=1
    test()

test()

虽然可以设置,但是因为不是尾递归,仍然要保存栈,内存大小一定,不可能无限递归

 

14 面向过程编程与函数式编程

面向过程式编程

#1、首先强调:面向过程编程绝对不是用函数编程这么简单,面向过程是一种编程思路、思想,而编程思路是不依赖于具体的语言或语法的。言外之意是即使我们不依赖于函数,也可以基于面向过程的思想编写程序

#2、定义
面向过程的核心是过程二字,过程指的是解决问题的步骤,即先干什么再干什么

基于面向过程设计程序就好比在设计一条流水线,是一种机械式的思维方式

#3、优点:复杂的问题流程化,进而简单化

#4、缺点:可扩展性差,修改流水线的任意一个阶段,都会牵一发而动全身

#5、应用:扩展性要求不高的场景,典型案例如linux内核,git,httpd

#6、举例
流水线1:
用户输入用户名、密码--->用户验证--->欢迎界面

流水线2:
用户输入sql--->sql解析--->执行功能
函数式编程是使用一系列函数去解决问题,按照一般编程思维,面对问题时我们的思考方式是“怎么干”,而函数函数式编程的思考方式是我要“干什么”。 至于函数式编程的特点暂不总结,我们直接拿例子来体会什么是函数式编程。
最后我们可以看到,函数式编程有如下好处:
#优点
1)代码更简单了。
2)数据集,操作,返回值都放到了一起。
3)你在读代码的时候,没有了循环体,于是就可以少了些临时变量,以及变量倒来倒去逻辑。
4)你的代码变成了在描述你要干什么,而不是怎么去干。

 

函数复习

标签:glob   结构   修改   位置   blog   特性   栈帧   else   而不是   

原文地址:https://www.cnblogs.com/ldq1996/p/8447253.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!