Surrounded Regions
Given a 2D board containing ‘X‘
and ‘O‘
,
capture all regions surrounded by ‘X‘
.
A region is captured by flipping all ‘O‘
s into ‘X‘
s
in that surrounded region.
For example,
X X X X X O O X X X O X X O X X
After running your function, the board should be:
X X X X X X X X X X X X X O X X
分析:这个题花了不少时间,最后才弄明白怎么做,开始想着判断每个是O的点的上下左右是否是X来断定是否是被围绕的区域,这是明显不对的;然后再考虑遍历二维矩阵,如果元素为O,则判断O是否是被围绕的区域,如果是将此处的值改为X,如果不是将此处的值改为另一个标志‘D’,这样每次求解可以根据点的上下左右来判断,但是这样忽略了当右下角为O的情况;后来改进算法,改为先判断上面一个点和左边一个点,如果其中一个为‘D’,则肯定不能被围绕,然后判断右边和下面的点,如果为‘O’,则递归为求解右边和下边的点的与,这样超时了。
最后搜索到一种方法,遍历二维矩阵,每次遇到‘O’点时找到与此点在同一个连通域的‘O‘,都将其替换为‘P‘,判断此连通域是否有点在边界上,如果有则将所有的点都变换为‘D‘,如果没有则将所有的点都变换为‘X‘。遍历结束后,再将所有‘D‘转换为‘O’。
Accepted 代码如下:
class Solution { public: void solve(vector<vector<char>> &board) { int rows = board.size(); if(rows <= 2){ return; } int cols = board[0].size(); if(cols <= 2){ return; } for(int i=0; i<rows; ++i){ for(int j=0; j<cols; ++j){ if(board[i][j] == ‘O‘){ bool isSurr = isSurround(board,i,j); replaceSurround(board,isSurr); } } } //将D替换为O for(int i=0; i<rows; ++i){ for(int j=0; j<cols; ++j){ if(board[i][j] == ‘D‘){ board[i][j] = ‘O‘; } } } } //判断(m,n)坐标是否被环绕,同时将与(m,n)联通的区域标志为‘P‘ bool isSurround(vector<vector<char>> &board,int m,int n){ bool hasPath = false; board[m][n] = ‘P‘; int rows = board.size(); int cols = board[0].size(); for(int i=0; i<rows; ++i){ for(int j=0; j<cols; ++j){ if(board[i][j] == ‘P‘){ if(i == 0){ hasPath = true; //return false; }else{ if(board[i-1][j] == ‘O‘){ board[i-1][j] = ‘P‘; i -= 2; //注意为i=i-2,因为(i-1,j)已经做出判断了,下次判断(i-2,j)的部分 break; //注意为break,更改了i的值,跳出j的循环 } } if(j == 0){ hasPath = true; //return false; }else{ if(board[i][j-1] == ‘O‘){ board[i][j-1] = ‘P‘; j -= 2; continue; } } if(i == rows-1){ hasPath = true; //return false; }else{ if(board[i+1][j] == ‘O‘){ board[i+1][j] = ‘P‘; } } if(j == cols-1){ hasPath = true; //return false; }else{ if(board[i][j+1] == ‘O‘){ board[i][j+1] = ‘P‘; } } } } } return hasPath ? false:true; } //更新联通区域标志为P的点,如果被环绕更新为X,如果不被环绕更新为D void replaceSurround(vector<vector<char>> &board,bool isSurrounded){ for(int i=0; i<board.size(); ++i){ for(int j=0; j<board[i].size(); ++j){ if(board[i][j] == ‘P‘){ if(isSurrounded){ board[i][j] = ‘X‘; }else{ board[i][j] = ‘D‘; } } } } } };
2、Sum Root to Leaf Numbers
Given a binary tree containing digits from 0-9
only,
each root-to-leaf path could represent a number.
An example is the root-to-leaf path 1->2->3
which
represents the number 123
.
Find the total sum of all root-to-leaf numbers.
For example,
1 / 2 3
The root-to-leaf path 1->2
represents the
number 12
.
The root-to-leaf path 1->3
represents the
number 13
.
Return the sum = 12 + 13 = 25
.
分析:这个题很简单,就是简单的递归。
代码如下:
class Solution { public: int sumNumbers(TreeNode *root) { int sum = 0; allSum = 0;; path(root,sum); return allSum; } void path(TreeNode* root,int sum){ if(root == NULL){ return; }else{ sum = sum*10 + root->val; if(!root->left && !root->right){ allSum += sum; return; } if(root->left){ path(root->left,sum); } if(root->right){ path(root->right,sum); } } } int allSum; };
3、Longest Consecutive Sequence
Given an unsorted array of integers, find the length of the longest consecutive elements sequence.
For example,
Given [100, 4, 200, 1, 3, 2]
,
The longest consecutive elements sequence is [1, 2, 3, 4]
.
Return its length: 4
.
Your algorithm should run in O(n) complexity.
分析:首先不考虑复杂度时,要求连续数的长度,首先考虑到先把数组排序,从头开始,看序列的长度,此时可以采用multiset来实现;但是看到O(n)的复杂度,想到的是set是用红黑树实现的,复杂度为O(nlogn),但是哈希表结构是未排序的,当遍历到一个值时,需要判断小于此值和大于此值的值是否存在,如果不存在还得继续遍历,还需要保存前一个值,比较复杂,而且hash_map不在C++标准库中,一直显示‘hash_multimap‘ was not declared in this scope
因此采用了multiset,结果是Accepted,但是从内部结构来说却是时间复杂度为O(nlogn)
代码如下:
class Solution { public: int longestConsecutive(vector<int> &num) { if(num.size() <= 1){ return num.size(); } multiset<int> numSet; for(int i=0; i<num.size(); ++i){ numSet.insert(num[i]); } int maxLen = 1; for(multiset<int>::iterator iter=numSet.begin(); iter!=numSet.end(); ){ int tempLen = 1; while(iter!=numSet.end()){ int nextVal = *iter , curVal = *iter; while(curVal == nextVal){ curVal = *iter; if(++iter == numSet.end()){ if(tempLen > maxLen){ maxLen = tempLen; } return maxLen; } nextVal = *iter; } --iter; curVal = *iter; ++iter; if(curVal+1 == nextVal){ ++tempLen; }else{ break; } } if(tempLen > maxLen){ maxLen = tempLen; } } return maxLen; } };
leetcode --day12 Surrounded Regions & Sum Root to Leaf Numbers & Longest Consecutive Sequence
原文地址:http://blog.csdn.net/kuaile123/article/details/25533879