码迷,mamicode.com
首页 > 其他好文 > 详细

Codeforces Round #462 (Div. 2)题解

时间:2018-02-15 17:35:30      阅读:204      评论:0      收藏:0      [点我收藏+]

标签:组成   通过   过多   数列   body   ack   ref   div   code   

Codeforces Round #462 (Div. 2)

B题……我固执的认为1e18是18位数,导致被hack,花了20分钟才检查出这个错误,很僵硬

Codeforces 934C

题意

给定一个由\(1\)\(2\)组成的数列,并且可以将区间\([l,r]\)内的数翻转一次,求这种情况下数列的\(LIS\)

数列长度\(n \le 2000\)

解题思路

如果不翻转的话,可以枚举从1变成2的位置,通过预处理\(1\)\(2\)数量的前缀和,那么这个决策点的\(LIS=one[i]+two[n]-two[i]\)

再考虑翻转,可以算出翻转区间内的决策点的\(LIS\)
\[ one[l-1]+two[i-1]-two[l-1]+one[r]-one[i-1]+two[n]-two[r] \]
两两配对有:
\[ (one[l-1]-two[l-1])-(one[i-1]-two[i-1])+(one[r]-two[r])+two[n] \]

进而固定\(l\),增加\(r\)时,维护\((one[i-1]-two[i-1])\)的最小值,可得当前区间决策的最大值

复杂度\(O(n^2)\)

#include <bits/stdc++.h>
using namespace std;
const int maxn=2018;
int n;
int a[maxn],one[maxn],two[maxn],dev[maxn];
int main(int argc, char const *argv[])
{
    scanf("%d",&n);
    for (int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    for (int i=1;i<=n;i++)
    {
        if(a[i]==1)
        {
            one[i]=one[i-1]+1;
            two[i]=two[i-1];
        }
        else
        {
            one[i]=one[i-1];
            two[i]=two[i-1]+1;
        }
    }
    for (int i=0;i<=n;i++)
        dev[i]=one[i]-two[i];
    int ans=0;
    for (int i=0;i<=n;i++)
    {
        int minv=dev[i];
        for (int j=i;j<=n;j++){
            ans=max(dev[i]+dev[j]-minv+two[n],ans);
            minv=min(dev[j],minv);
        }
    }
    printf("%d\n",ans);

}

Codeforces 934D

题意

对于给定的\(1 \le p \le 10^{18}\)\(2 \le k \le 2000\),构造多项式\(f(x)=q(x)(x+k)+p\),其中\(f(x)\)的所有系数都\(0 \le a_i \le k\)

解题思路

\(f(x)=\sum\limits_{i=0}^{d}a_i \cdot x^i\)\(q(x)=\sum\limits_{i=0}^{d-1}b_i \cdot x^i\)

通过多项式长除法,易得\(p=a_0-k \cdot a_1+ \cdots +(-1)^d \cdot k^d\cdot a_d\)

\(-k\)进制下,系数\(a\)唯一的

对等式两端同时模\(k\)取整数 ,可得\(a_0\),减去\(a_0\)除以\(-k\)进入新一轮迭代

AC代码

#include <bits/stdc++.h>
using namespace std;
int ans[200];
int cnt=0;
int main(int argc, char const *argv[])
{
    long long p,k;
    scanf("%I64d%I64d",&p,&k);
    while(p!=0)
    {
        ans[++cnt]=(p%k+k)%k;
        p-=(p%k+k)%k;
        p/=(-k);
    }
    printf("%d\n",cnt);
    for (int i=1;i<=cnt;i++)
        printf("%d ",ans[i]);
    printf("\n");
    return 0;
}

Codeforces Round #462 (Div. 2)题解

标签:组成   通过   过多   数列   body   ack   ref   div   code   

原文地址:https://www.cnblogs.com/falseangel/p/8449641.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!