码迷,mamicode.com
首页 > 其他好文 > 详细

[CEOI 2004]Sweet

时间:2018-02-16 23:50:24      阅读:364      评论:0      收藏:0      [点我收藏+]

标签:aws   markdown   com   nav   dig   cpp   mes   次数   turn   

Description

题面链接

\(n\) 种糖果。第 \(i\) 种糖果有 \(m_i\) 个。取出一些糖果,至少 \(a\) 个,但不超过 \(b\) 个。求方案数。

\(1\leq n\leq 10 , 0\leq a\leq b\leq 10000000 , 0\leq m_i\leq 1000000\)

Solution

先考虑没有下界和上界的情况。

对于第 \(i\) 种糖果,我们写出形式幂级数 \(\sum\limits_{j=0}^{m_i}x^j\)

那么式子 \(\prod\limits_{i=1}^n\sum\limits_{j=0}^{m_i}x^j\) 中系数和就是答案。

由于 \(\sum\limits_{i=0}^nx^i\cdot(1-x)=1-x^{n+1}\) ,故原式可化为 \(\prod\limits_{i=1}^n\frac{1-x^{m_i-1}}{1-x}=\frac{\prod\limits_{i=1}^n1-x^{m_i-1}}{(1-x)^n}\)

由刚才提到的公式二,原式可化为 \(\left(\prod\limits_{i=1}^n1-x^{m_i-1}\right)\cdot\left(\sum\limits_{i=0}^{\infty}C_{i+n-1}^{n-1}x^i\right)\)

现在设 \(f_i\) 表示最多选 \(i\) 个糖的方案数。 \(f_i\) 就是上述式子中的 \([0,i]\) 次项式的系数和。

由于 \(n\) 比较小,我们可以将前一部分的式子暴力拆解。用 \(2^n\) 的深搜实现。

对于搜出来的某一个次数 \(p\) ,那么对于 \(f_i\) ,后面部分有贡献的只有 \(\sum\limits_{j=0}^{i-p}C_{j+n-1}^{n-1}x^j\) 。由于 \(C_n^n=1,C_n^{n-1}+C_n^n=C_{n+1}^n\) 得后一部分的式子可以直接化简为 \(C_{i+n-p}^{n}\)

则原题就是求 \(f_b-f_{a-1}\)

Code

//It is made by Awson on 2018.2.16
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int MOD = 2004;
void read(int &x) {
    char ch; bool flag = 0;
    for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
    for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
    x *= 1-2*flag;
}
void print(int x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(int x) {if (x < 0) putchar('-'); print(Abs(x)); }

int n, a, b, m[15], ans, I;

int C(int n, int m) {
    if (n < m) return 0;
    LL x = 1;
    for (int i = 1; i <= m; i++) x *= i;
    LL mod = x*MOD, ans = 1;
    for (int i = n-m+1; i <= n; i++) ans = ans*i%mod;
    return int(ans/x)%MOD;
}
void dfs(int cen, int cnt, int sum) {
    if (cen > n) {
        if (cnt&1) ans -= C(I+n-sum, n);
        else ans += C(I+n-sum, n);
        return;
    }
    dfs(cen+1, cnt, sum);
    dfs(cen+1, cnt+1, sum+m[cen]);
}
int f(int x) {
    if (x < 0) return 0; I = x;
    ans = 0; dfs(1, 0, 0);
    return ans%MOD;
}
void work() {
    read(n); read(a); read(b);
    for (int i = 1; i <= n; i++) read(m[i]), ++m[i];
    writeln(((f(b)-f(a-1))%MOD+MOD)%MOD);
}
int main() {
    work(); return 0;
}

[CEOI 2004]Sweet

标签:aws   markdown   com   nav   dig   cpp   mes   次数   turn   

原文地址:https://www.cnblogs.com/NaVi-Awson/p/8451291.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!