$数论$
$这个题已经忘了怎么做了,也不想知道了,只记得看了3个小时$
$对于有gcd(f_i, f_j) = f_{gcd(i, j)}性质的数列,以下结论适用$
#include<bits/stdc++.h> using namespace std; typedef long long ll; const int N = 1e6 + 5; int n; ll ans = 1, P; ll f[N], g[N]; int m[N]; int rd() { int x = 0, f = 1; char c = getchar(); while(c < ‘0‘ || c > ‘9‘) { if(c == ‘-‘) f = -1; c = getchar(); } while(c >= ‘0‘ && c <= ‘9‘) { x = x * 10 + c - ‘0‘; c = getchar(); } return x * f; } ll power(ll x, ll t) { ll ret = 1; for(; t; t >>= 1, x = x * x % P) if(t & 1) ret = ret * x % P; return ret; } ll inv(ll x) { return power(x, P - 2); } int main() { int T = rd(); while(T--) { n = rd(); P = rd(); f[0] = 0; f[1] = 1; for(int i = 2; i <= n; ++i) f[i] = (f[i - 1] * 2 + f[i - 2]) % P; for(int i = 1; i <= n; ++i) g[i] = f[i]; for(int i = 1; i <= n; ++i) { ll t = inv(g[i]); for(int j = i + i; j <= n ; j += i) g[j] = g[j] * t % P; } ll lcm = 1; ans = 0; for(int i = 1; i <= n; ++i) { lcm = lcm * g[i] % P; ans = (ans + 1LL * lcm * i) % P; } printf("%lld\n", ans); } return 0; }