Division
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 999999/400000 K (Java/Others)
Total Submission(s): 5344 Accepted Submission(s):
2115
Problem Description
Little D is really interested in the theorem of sets
recently. There’s a problem that confused him a long time.
Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that
![技术分享图片](http://acm.hdu.edu.cn/data/images/C295-1003-1.jpg)
and the total cost of each subset is minimal.
Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that
![技术分享图片](http://acm.hdu.edu.cn/data/images/C295-1003-1.jpg)
and the total cost of each subset is minimal.
Input
The input contains multiple test cases.
In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given.
For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.
In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given.
For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.
Output
For each test case, output one line containing exactly
one integer, the minimal total cost. Take a look at the sample output for
format.
Sample Input
2
3 2
1 2 4
4 2
4 7 10 1
Sample Output
Case 1: 1
Case 2: 18
Hint
The answer will fit into a 32-bit signed integer.
Source
Recommend
四边形不等式好恶心。。
首先对所有的数据排序(根据方差的性质贪心)
我们用$dp[i][j]$表示前$j$个数,分为$i$段的最小代价
朴素的转移的话枚举前一段的断点
然后根据……&*()¥#%……&我们可以知道这玩意儿满足四边形不等式
然后愉快的套上板子就好啦
#include<cstdio> #include<cstring> #include<algorithm> const int MAXN=10001,INF=1e9+10; using namespace std; inline int read() { char c=getchar();int x=0,f=1; while(c<‘0‘||c>‘9‘){if(c==‘-‘)f=-1;c=getchar();} while(c>=‘0‘&&c<=‘9‘){x=x*10+c-‘0‘;c=getchar();} return x*f; } int dp[MAXN][MAXN],s[MAXN][MAXN],a[MAXN]; int mul(int x){return x*x;} int main() { int Test=read(),cnt=0; while(Test--) { int N=read(),M=read(); for(int i=1;i<=N;i++) a[i]=read();sort(a+1,a+N+1); for(int i=1;i<=N;i++) dp[1][i]=mul(a[i]-a[1]),s[1][i]=1; for(int i=2;i<=M;i++) { s[i][N+1]=N-1;//边界 for(int j=N;j>=i;j--) { int mn=INF,mnpos=-1; for(int k=s[i-1][j];k<=s[i][j+1];k++) { if(dp[i-1][k]+mul(a[j]-a[k+1])<mn) { mn=dp[i-1][k]+mul(a[j]-a[k+1]); mnpos=k; } } dp[i][j]=mn; s[i][j]=mnpos; } } printf("Case %d: %d\n",++cnt,dp[M][N]); } return 0; }