如果抛开Keras,TensorLayer,tfLearn,tensroflow 能否写出简介的代码? 可以!slim这个模块是在16年新推出的,其主要目的是来做所谓的“代码瘦身”
一.简介
slim被放在tensorflow.contrib这个库下面,导入的方法如下:
import tensorflow.contrib.slim as slim
众所周知 tensorflow.contrib这个库,tensorflow官方对它的描述是:此目录中的任何代码未经官方支持,可能会随时更改或删除。每个目录下都有指定的所有者。它旨在包含额外功能和贡献,最终会合并到核心TensorFlow中,但其接口可能仍然会发生变化,或者需要进行一些测试,看是否可以获得更广泛的接受。所以slim依然不属于原生tensorflow。
slim是一个使构建,训练,评估神经网络变得简单的库。它可以消除原生tensorflow里面很多重复的模板性的代码,让代码更紧凑,更具备可读性。另外slim提供了很多计算机视觉方面的著名模型(VGG, AlexNet等),我们不仅可以直接使用,甚至能以各种方式进行扩展。
slim的子模块及功能介绍:
arg_scope: provides a new scope named arg_scope that allows a user to define default arguments for specific operations within that scope.
除了基本的namescope,variabelscope外,又加了argscope,它是用来控制每一层的默认超参数的。(后面会详细说)
data: contains TF-slim‘s dataset definition, data providers, parallel_reader, and decoding utilities.
貌似slim里面还有一套自己的数据定义,这个跳过,我们用的不多。
evaluation: contains routines for evaluating models.
评估模型的一些方法,用的也不多
layers: contains high level layers for building models using tensorflow.
这个比较重要,slim的核心和精髓,一些复杂层的定义
learning: contains routines for training models.
一些训练规则
losses: contains commonly used loss functions.
一些loss
metrics: contains popular evaluation metrics.
评估模型的度量标准
nets: contains popular network definitions such as VGG and AlexNet models.
包含一些经典网络,VGG等,用的也比较多
queues: provides a context manager for easily and safely starting and closing QueueRunners.
文本队列管理,比较有用。
regularizers: contains weight regularizers.
包含一些正则规则
variables: provides convenience wrappers for variable creation and manipulation.
slim管理变量的机制
二.slim定义模型
slim中定义一个变量的示例:
# Model Variables
weights = slim.model_variable(
‘weights‘
,
shape=[
10
,
10
,
3
,
3
],
initializer=tf.truncated_normal_initializer(stddev=
0.1
),
regularizer=slim.l2_regularizer(
0.05
),
device=
‘/CPU:0‘
)
model_variables = slim.get_model_variables()
# Regular variables
my_var = slim.variable(
‘my_var‘
,
shape=[
20
,
1
],
initializer=tf.zeros_initializer())
regular_variables_and_model_variables = slim.get_variables()
slim中实现一个层:
首先让我们看看tensorflow怎么实现一个层,例如卷积层:
input = ...
with tf.name_scope(
‘conv1_1‘
) as scope:
kernel = tf.Variable(tf.truncated_normal([
3
,
3
,
64
,
128
], dtype=tf.float32,
stddev=1e-
1
), name=
‘weights‘
conv = tf.nn.conv2d(input, kernel, [
1
,
1
,
1
,
1
], padding=
‘SAME‘
)
biases = tf.Variable(tf.constant(
0.0
, shape=[
128
], dtype=tf.float32),
trainable=True, name=
‘biases‘
)
bias = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(bias, name=scope)
input = ...
net = slim.conv2d(input,
128
, [
3
,
3
], scope=
‘conv1_1‘
)
net = ...
net = slim.conv2d(net,
256
, [
3
,
3
], scope=
‘conv3_1‘
)
net = slim.conv2d(net,
256
, [
3
,
3
], scope=
‘conv3_2‘
)
net = slim.conv2d(net,
256
, [
3
,
3
], scope=
‘conv3_3‘
)
net = slim.max_pool2d(net, [
2
,
2
], scope=
‘pool2‘
)
net = slim.repeat(net,
3
, slim.conv2d,
256
, [
3
,
3
], scope=
‘conv3‘
)
net = slim.max_pool2d(net, [
2
,
2
], scope=
‘pool2‘
)
假设定义三层FC:
# Verbose way:
x = slim.fully_connected(x,
32
, scope=
‘fc/fc_1‘
)
x = slim.fully_connected(x,
64
, scope=
‘fc/fc_2‘
)
x = slim.fully_connected(x,
128
, scope=
‘fc/fc_3‘
)
32
,
64
,
128
], scope=
‘fc‘
)
# 普通方法:
x = slim.conv2d(x,
32
, [
3
,
3
], scope=
‘core/core_1‘
)
x = slim.conv2d(x,
32
, [
1
,
1
], scope=
‘core/core_2‘
)
x = slim.conv2d(x,
64
, [
3
,
3
], scope=
‘core/core_3‘
)
x = slim.conv2d(x,
64
, [
1
,
1
], scope=
‘core/core_4‘
)
# 简便方法:
slim.stack(x, slim.conv2d, [(
32
, [
3
,
3
]), (
32
, [
1
,
1
]), (
64
, [
3
,
3
]), (
64
, [
1
,
1
])], scope=
‘core‘
)
slim中的argscope:
如果你的网络有大量相同的参数,如下:
net = slim.conv2d(inputs,
64
, [
11
,
11
],
4
, padding=
‘SAME‘
,
weights_initializer=tf.truncated_normal_initializer(stddev=
0.01
),
weights_regularizer=slim.l2_regularizer(
0.0005
), scope=
‘conv1‘
)
net = slim.conv2d(net,
128
, [
11
,
11
], padding=
‘VALID‘
,
weights_initializer=tf.truncated_normal_initializer(stddev=
0.01
),
weights_regularizer=slim.l2_regularizer(
0.0005
), scope=
‘conv2‘
)
net = slim.conv2d(net,
256
, [
11
,
11
], padding=
‘SAME‘
,
weights_initializer=tf.truncated_normal_initializer(stddev=
0.01
),
weights_regularizer=slim.l2_regularizer(
0.0005
), scope=
‘conv3‘
)
with slim.arg_scope([slim.conv2d], padding=
‘SAME‘
,
weights_initializer=tf.truncated_normal_initializer(stddev=
0.01
)
weights_regularizer=slim.l2_regularizer(
0.0005
)):
net = slim.conv2d(inputs,
64
, [
11
,
11
], scope=
‘conv1‘
)
net = slim.conv2d(net,
128
, [
11
,
11
], padding=
‘VALID‘
, scope=
‘conv2‘
)
net = slim.conv2d(net,
256
, [
11
,
11
], scope=
‘conv3‘
)
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.relu,
weights_initializer=tf.truncated_normal_initializer(stddev=
0.01
),
weights_regularizer=slim.l2_regularizer(
0.0005
)):
with slim.arg_scope([slim.conv2d], stride=
1
, padding=
‘SAME‘
):
net = slim.conv2d(inputs,
64
, [
11
,
11
],
4
, padding=
‘VALID‘
, scope=
‘conv1‘
)
net = slim.conv2d(net,
256
, [
5
,
5
],
weights_initializer=tf.truncated_normal_initializer(stddev=
0.03
),
scope=
‘conv2‘
)
net = slim.fully_connected(net,
1000
, activation_fn=None, scope=
‘fc‘
)
VGG:
def vgg16(inputs):
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.relu,
weights_initializer=tf.truncated_normal_initializer(
0.0
,
0.01
),
weights_regularizer=slim.l2_regularizer(
0.0005
)):
net = slim.repeat(inputs,
2
, slim.conv2d,
64
, [
3
,
3
], scope=
‘conv1‘
)
net = slim.max_pool2d(net, [
2
,
2
], scope=
‘pool1‘
)
net = slim.repeat(net,
2
, slim.conv2d,
128
, [
3
,
3
], scope=
‘conv2‘
)
net = slim.max_pool2d(net, [
2
,
2
], scope=
‘pool2‘
)
net = slim.repeat(net,
3
, slim.conv2d,
256
, [
3
,
3
], scope=
‘conv3‘
)
net = slim.max_pool2d(net, [
2
,
2
], scope=
‘pool3‘
)
net = slim.repeat(net,
3
, slim.conv2d,
512
, [
3
,
3
], scope=
‘conv4‘
)
net = slim.max_pool2d(net, [
2
,
2
], scope=
‘pool4‘
)
net = slim.repeat(net,
3
, slim.conv2d,
512
, [
3
,
3
], scope=
‘conv5‘
)
net = slim.max_pool2d(net, [
2
,
2
], scope=
‘pool5‘
)
net = slim.fully_connected(net,
4096
, scope=
‘fc6‘
)
net = slim.dropout(net,
0.5
, scope=
‘dropout6‘
)
net = slim.fully_connected(net,
4096
, scope=
‘fc7‘
)
net = slim.dropout(net,
0.5
, scope=
‘dropout7‘
)
net = slim.fully_connected(net,
1000
, activation_fn=None, scope=
‘fc8‘
)
return
net
三.训练模型
import
tensorflow as tf
vgg = tf.contrib.slim.nets.vgg
# Load the images and labels.
images, labels = ...
# Create the model.
predictions, _ = vgg.vgg_16(images)
# Define the loss functions and get the total loss.
loss = slim.losses.softmax_cross_entropy(predictions, labels)