码迷,mamicode.com
首页 > 其他好文 > 详细

【转】经典算法:背包问题

时间:2014-09-21 01:42:29      阅读:628      评论:0      收藏:0      [点我收藏+]

标签:style   blog   http   color   io   使用   java   ar   strong   

本文由 ImportNew - hejiani 翻译自 javacodegeeks。欢迎加入Java小组。转载请参见文章末尾的要求。

背包问题很有意思,同时也富有挑战性。首先看一下这个问题的完整描述:

问题

假定背包的最大容量为W,N件物品,每件物品都有自己的价值和重量,将物品放入背包中使得背包内物品的总价值最大。

bubuko.com,布布扣

背包问题wiki

可以想象这样一个场景——小偷在屋子里偷东西,他带着一只背包。屋子里物品数量有限——每件物品都具有一定的重量和价值——珠宝重量轻但价值高,桌子重但价值低。最重要的是小偷背包容量有限。很明显,他不能把桌子分成两份或者带走珠宝的3/4。对于一件物品他只能选择带走或者不带走。

示例:

1 Knapsack Max weight : W = 10 (units) 
2 Total items         : N = 4
3 Values of items     : v[] = {10, 40, 30, 50} 
4 Weight of items     : w[] = {5, 4, 6, 3}

从示例数据大致估算一下,最大重量为10时背包能容纳的物品最大价值为50+40=90,重量为7。

解决方法:

最佳的解决方法是使用动态规划——先得到该问题的局部解然后扩展到全局问题解。

构建物品X在不同重量时的价值数组V(Value数组):

1 V[N][W] = 4 rows * 10 columns

该矩阵中的每个值的求解都代表一个更小的背包问题。

初始情况一:对于第0列,它的含义是背包的容量为0。此时物品的价值呢?没有。因此,第一列都填入0。

初始情况二:对于第0行,它的含义是屋内没有物品。那么没有任何物品的背包里的价值多少呢?还是没有!所有都是0。

bubuko.com,布布扣

步骤:

1、现在,开始填入数组每一行的值。第1行第1列代表什么含义呢?对于第一个物品,可以把重量为1的该物品放入背包吗?不行。第一个物品的重量是5。因此,填入0。实际上直到第5列(重量5)之前都应该填入0。
2、对于第1行的第5列(重量5),意味着将物品1放入背包。填入10(注意,这是Value数组):

bubuko.com,布布扣

3、继续,对于第6列,我们可以再放入重量为1(重量值-物品的重量)的物品吗。我们现在只考虑物品1。由于我们加入物品1之后就不能再加入额外的重量,可以很直观地看到其余的列都应该还是相同的值。

bubuko.com,布布扣

4、接着,有意思的事情就要出现了。在第3行第4列,此时重量为4。

需要作以下判断:

  1. 可以放入物品2吗——可以。物品2的重量为4。
  2. 不加入物品2的话当前已有物品的重量的Value值是否更大——查看相同重量时的前一行的值。不是。前一行的值为0,重量4时不能放入物品1。
  3. 在这个重量时可以放入两件物品使得价值最大吗?——不能。此时重量减去物品2的重量后为0。

bubuko.com,布布扣

为什么是前一行?

简单来说,重量为4的前一行的值本身就是个更小的背包问题解,它的含义是到该重量时背包内物品的最大价值(通过遍历物品得到)。

举个例子:

  1. 当前物品价值 = 40
  2. 当前物品重量 = 4
  3. 剩余重量 = 4-4 = 0
  4. 查看上面的行(物品1或者其余行的值)。剩余容量为0时,可以再容纳物品1吗?对于该给定的重量值上面的行还有任何值吗?

计算过程如下:

1) 计算不放入该物品时该重量的最大价值:

1 previous row, same weight = 0
2  
3 => V[item-1][weight]

2) 计算当前物品的价值 + 可以容纳的剩余重量的价值

1 Value of current item
2 + value in previous row with weight 4 (total weight until now (4) - weight of the current item (4))
3  
4 => val[item-1] + V[item-1][weight-wt[item-1]]

找到二者之中的最大值40(0和40)。

3) 下一次最重要的位置为第2行第9列。意味着此时重量为9,放入两件物品。根据示例数据现在可以放入两件物品。我们作了以下判断:

1 The value of the current item = 40
2 The weight of the current item = 4
3 The weight that is left over = 9 - 4 = 5
4 Check the row above.  At the remaining weight 5, are we able to accommodate Item 1.

bubuko.com,布布扣

计算如下:

1. 不加入该物品时该重量的最大价值:

1 previous row, same weight = 10

2. 计算当前物品的价值+可以容纳的剩余重量的价值

1 Value of current item (40)
2 + value in previous row with weight 5 (total weight until now (9) - weight of the current item (4)) 
3  
4 = 10

10vs50 = 50。

解决了所有的子问题之后,返回V[N][W]的值——4件物品重量为10时:

bubuko.com,布布扣

复杂度

解法的复杂度非常直观。在N次循环中有W次循环 => O(NW)

实现

Java代码实现:

 1 public class Knapsack {
 2     public static void main(String[] args) throws Exception {
 3         int val[] = {10, 40, 30, 50};
 4         int wt[] = {5, 4, 6, 3};
 5         int W = 10;
 6  
 7         System.out.println(knapsack(val, wt, W));
 8     }
 9  
10     public static int knapsack(int val[], int wt[], int W) {
11         //Get the total number of items. 
12         //Could be wt.length or val.length. Doesn‘t matter
13         int N = wt.length; 
14  
15         //Create a matrix. 
16         //Items are in rows and weight at in columns +1 on each side
17         int[][] V = new int[N + 1][W + 1]; 
18  
19         //What if the knapsack‘s capacity is 0 - Set
20         //all columns at row 0 to be 0
21         for (int col = 0; col <= W; col++) {
22             V[0][col] = 0;
23         }
24  
25         //What if there are no items at home.  
26         //Fill the first row with 0
27         for (int row = 0; row <= N; row++) {
28             V[row][0] = 0;
29         }
30  
31         for (int item=1;item<=N;item++){
32             //Let‘s fill the values row by row
33             for (int weight=1;weight<=W;weight++){
34                 //Is the current items weight less
35                 //than or equal to running weight
36                 if (wt[item-1]<=weight){
37                     //Given a weight, check if the value of the current 
38                     //item + value of the item that we could afford 
39                     //with the remaining weight is greater than the value
40                     //without the current item itself
41                     V[item][weight]=Math.max (val[item-1]+V[item-1][weight-wt[item-1]], V[item-1][weight]);
42                 }
43                 else {
44                     //If the current item‘s weight is more than the
45                     //running weight, just carry forward the value
46                     //without the current item
47                     V[item][weight]=V[item-1][weight];
48                 }
49             }
50  
51         }
52  
53         //Printing the matrix
54         for (int[] rows : V) {
55             for (int col : rows) {
56                 System.out.format("%5d", col);
57             }
58             System.out.println();
59         }
60  
61         return V[N][W];
62     }
63 }

 

运行结果:

    0    0    0    0    0    0    0    0    0    0    0
    0    0    0    0    0   10   10   10   10   10   10
    0    0    0    0   40   40   40   40   40   50   50
    0    0    0    0   40   40   40   40   40   50   70
    0    0    0   50   50   50   50   90   90   90   90
90

 


 

原文链接: javacodegeeks 翻译: ImportNew.com hejiani
译文链接: http://www.importnew.com/13072.html
转载请保留原文出处、译者和译文链接。]


 

本文来源:http://www.importnew.com/13072.html

 

【转】经典算法:背包问题

标签:style   blog   http   color   io   使用   java   ar   strong   

原文地址:http://www.cnblogs.com/dwf07223/p/3983896.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!