补题进度:10/10
A(树形dp)
略
B(dp)
题意:
给出一个n个关键节点的机械手臂,最开始是竖直的,即关键点在二维平面上的坐标分别是(0,0) (0,100) (0,200) (0,300)......,然后我们每次可以选择一个关键节点把它旋转45°(当然它上面的那些点也要跟着旋转)
现在有q个询问,每个询问输入一个矩形,问最少通过多少次操作使得机械手臂的末端落到这个矩形内
n<=10,q<=1000
分析:
首先关键点转的先后顺序对结果并没有影响,所以不妨我们先转下层的,再转上层的
很自然的想法就是枚举每个关键点转了多少个45°,但是这样复杂度是8^10的,会TLE
我们考虑减少状态,我们发现转动了前i个关键点,第i个点落在某个位置的时候,前面有很多转动方法,这些状态对后面影响是一样的,但是我们每次却要去计算它
进一步发现每个可达点的坐标都可以用(100a+50sqrt(2)b,100c+50sqrt(2)d)来表示,所以我们可以把位置用四元组(a,b,c,d)来表示
于是考虑dp[i][a][b][c][d][last]表示转了前i个位置,目前终点是在(a,b,c,d),并且上面的机械手臂的朝向是last方向的最少步数
枚举每个点的转动然后计算出所有dp值就行了
C(树形dp)
题意:
求n个点m条边的无向图的最小点覆盖
2<=n<=1000,0<=m<=n+10
分析:
对于一般无向图的最小点覆盖是没有多项式解的,这题的数据范围很特殊,m<=n+10
首先如果m<=n-1,那么就是简单的树形dp,现在是在树的基础上,多出了11条边
我们考虑先去人为枚举这些额外边对应的点的选取是否,然后再做树形dp,这样就ok了
对于一条非树边(u,v),那么有三种情况:u选v不选;u不选v选;uv都选
那么这样时间复杂度就是O(3^11*n)是TLE的
我们考虑把三种情况压缩成两种:u选v不选;u随意v选
然后时间复杂度就是O(2^11*n)的了,就过了
D(博弈)
题意:
Alice和Bob进行博弈,刚开始有一个整数K,Alice可以把一个数字x变成$[\frac{x}{a1},\frac{x}{a2}]$中的一个实数,Bob可以把一个数字x变成$[\frac{x}{b1},\frac{x}{b2}]$中的一个实数,Alice和Bob轮流操作
如果某个人的某一次操作之后,数字小于1了,那么他就获胜了
给定整数k,a1,a2,b1,b2,问最终谁能获胜
1<=k<=1e9,2<=a2<=a1<=1e9,2<=b2<=b1<=1e9
分析:
[0,1)是先手必败态,我们考虑把[0,1)倍增上去直到包含k,那么我们就知道了k到底是Alice先手必胜还是Alice先手必败了
假设我们已经知道了[0,m)的Alice/Bob先手胜败情况,那么是可以转移到[0,tm)的,其中t=min(a2,b2),要怎么转移呢?
对于[0,m)中的Alice先手必胜区间[l,r),那么[l*b2,r*b1)是[0,tm)的Bob先手必败态,其它同理
我们需要记录下所有的Alice、Bob胜败区间,去用区间更新,具体细节见代码
E(计算几何)
略
F(构造)
略
G(fibonacci循环节)
题意:
求fibonacci在模p意义下的循环节,p不一定是质数
2<=p<=2e9
分析:
我们把p分解成$p_1^{k_1}p_2^{k_2}p_3^{k_3}...$,然后对每个$p_i^{k_i}$求出循环节,然后求个lcm就是结果了
模$p_i^{k_i}$的循环节就是模$p_i$的循环节乘上$p_i^{k_i-1}$
根据结论,模一个质数$p_i$的循环节一定是(p+1)(p-1)的因数,枚举因子就行了
时间复杂度是O(sqrt(p)*log(p))
H(dp套dp+轮廓线)
题意:
给出一个n行m列的矩阵,每个矩阵元素是0/1/2,现在要从(1,1)走到(n,m),每步只能向下走一步或者向右走一步,将走过的路上的数字加起来作为你的得分,假设最大得分是k
现在给定n,m,你需要回答对于k=0,1,2,...,2(n+m-1),有多少种n行m列的矩阵,最大得分是k
1<=n,m<=6
分析:
考虑一个简单的问题,给定这个矩阵,如何求出最大得分?这是一个很简单的dp问题,dp[i][j]表示走到(i,j)的最大得分
现在我们要去统计方案数,我们需要把dp[i][j]作为状态放到我们的计数dp里
dp[i][j][state]表示填数填到了(i,j),dp状态是state情况下的方案数,其中state应该是一个二维数组
那么时间复杂度是O(n*m*23^(nm))的,是很爆炸的
我们仔细分析发现对(i,j)有影响的dp状态只又(i,j)轮廓线上的所有位置,也就是说只有m个,所以我们可以做轮廓线dp
这样时间复杂度就是O(n*m*23^m)
我们不用数组去存那个轮廓线,用vector去存那个轮廓线,那么状态就会继续大大减少
但是这样还是比较慢,没法在几秒内跑出来的,但没关系,打个表就可以了
I(贪心)
题意:
给出n个a区间和m个b区间[li,ri]。你需要从b区间中选择最少的区间,使得每个a区间都和你选出的某个b区间有交。
n,m<=2000,li,ri<=1e9
分析:
首先把a中包含其它区间的区间删除,把b中被其它区间包含的区间删除,那么a,b中的区间按照左端点上升排序,右端点也是上升的了
对于b区间的删除很好办,对于a区间的删除只需要拿个栈来维护就行了
删完之后就简单的贪心就行了
时间复杂度O(nlogn)
J(贪心)
题意:
给出一个n的排列p,你可以交换相邻的数让它从小到大排列,最少交换次数显然是逆序对的个数k。问通过k步交换使它从小到大的方案是否唯一。
n<=1e5
分析:
如果某一时刻,可以交换的相邻逆序对有两个,那么就是不唯一了
仔细分析发现,唯一当且仅当只有一个数字偏离了正确的相对位置,即最长公共子序列的长度是n-1